Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 14\cdot 53 + 33\cdot 53^{2} + 23\cdot 53^{3} + 11\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + 40 + \left(52 a + 39\right)\cdot 53 + \left(24 a + 5\right)\cdot 53^{2} + 33 a\cdot 53^{3} + \left(29 a + 31\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 43 + 43\cdot 53 + 14\cdot 53^{2} + 14\cdot 53^{3} + 14\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 21 a + 3 + \left(18 a + 17\right)\cdot 53 + \left(45 a + 50\right)\cdot 53^{2} + \left(37 a + 5\right)\cdot 53^{3} + \left(a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 32 a + 34 + \left(34 a + 16\right)\cdot 53 + \left(7 a + 1\right)\cdot 53^{2} + \left(15 a + 6\right)\cdot 53^{3} + \left(51 a + 4\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 44 a + 23 + 27\cdot 53 + 28 a\cdot 53^{2} + \left(19 a + 3\right)\cdot 53^{3} + \left(23 a + 10\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$9$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$3$ |
| $15$ |
$2$ |
$(1,2)$ |
$3$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.