Properties

Label 9.5e16_17e4.10t26.2c1
Dimension 9
Group $A_6$
Conductor $ 5^{16} \cdot 17^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$A_6$
Conductor:$12744293212890625= 5^{16} \cdot 17^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 10 x^{4} - 10 x^{3} + 15 x^{2} - 7 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,9)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 14 + 6\cdot 47 + 23\cdot 47^{2} + 12\cdot 47^{3} + 37\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 26 + \left(34 a + 26\right)\cdot 47 + \left(23 a + 14\right)\cdot 47^{2} + \left(16 a + 23\right)\cdot 47^{3} + \left(19 a + 7\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 16 + \left(12 a + 7\right)\cdot 47 + \left(23 a + 27\right)\cdot 47^{2} + \left(30 a + 32\right)\cdot 47^{3} + \left(27 a + 29\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 1 + \left(10 a + 45\right)\cdot 47 + \left(38 a + 8\right)\cdot 47^{2} + \left(6 a + 7\right)\cdot 47^{3} + \left(8 a + 41\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 19 + \left(36 a + 9\right)\cdot 47 + \left(8 a + 28\right)\cdot 47^{2} + \left(40 a + 29\right)\cdot 47^{3} + \left(38 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 46\cdot 47 + 38\cdot 47^{2} + 35\cdot 47^{3} + 21\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$72$$5$$(1,2,3,4,5)$$-1$
$72$$5$$(1,3,4,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.