Properties

Label 9.41e6_5683e6.20t145.1
Dimension 9
Group $S_6$
Conductor $ 41^{6} \cdot 5683^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$160018087894875800042941474714729= 41^{6} \cdot 5683^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 3 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 22 + \left(3 a + 17\right)\cdot 97 + \left(95 a + 76\right)\cdot 97^{2} + \left(42 a + 82\right)\cdot 97^{3} + \left(7 a + 39\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 a + 19 + \left(55 a + 30\right)\cdot 97 + \left(20 a + 75\right)\cdot 97^{2} + \left(69 a + 14\right)\cdot 97^{3} + \left(a + 57\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 91 + 92\cdot 97 + 66\cdot 97^{2} + 84\cdot 97^{3} + 49\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 94 + \left(93 a + 45\right)\cdot 97 + \left(a + 70\right)\cdot 97^{2} + \left(54 a + 30\right)\cdot 97^{3} + \left(89 a + 4\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 86\cdot 97 + 58\cdot 97^{2} + 14\cdot 97^{3} + 53\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 87 + \left(41 a + 17\right)\cdot 97 + \left(76 a + 40\right)\cdot 97^{2} + \left(27 a + 63\right)\cdot 97^{3} + \left(95 a + 86\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.