Properties

Label 9.3e16_5e10.20t145.2
Dimension 9
Group $S_6$
Conductor $ 3^{16} \cdot 5^{10}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$420378134765625= 3^{16} \cdot 5^{10} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 15 x^{2} - 12 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 55 a + 73 + \left(93 a + 83\right)\cdot 97 + \left(48 a + 96\right)\cdot 97^{2} + \left(9 a + 27\right)\cdot 97^{3} + 47\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 80\cdot 97 + 80\cdot 97^{2} + 54\cdot 97^{3} + 9\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 6\cdot 97 + 68\cdot 97^{2} + 40\cdot 97^{3} + 37\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 69\cdot 97 + 10\cdot 97^{2} + 22\cdot 97^{3} + 33\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 25\cdot 97 + 79\cdot 97^{2} + 59\cdot 97^{3} + 28\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 a + 31 + \left(3 a + 25\right)\cdot 97 + \left(48 a + 52\right)\cdot 97^{2} + \left(87 a + 85\right)\cdot 97^{3} + \left(96 a + 37\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.