Properties

Label 9.3e14_17e8.20t145.1
Dimension 9
Group $S_6$
Conductor $ 3^{14} \cdot 17^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$33364831591822329= 3^{14} \cdot 17^{8} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 12 x^{4} + 19 x^{3} - 42 x^{2} - 39 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 193 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 193 }$: $ x^{2} + 192 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 87 + 184\cdot 193 + 162\cdot 193^{2} + 168\cdot 193^{3} + 36\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 90 a + 121 + \left(79 a + 19\right)\cdot 193 + \left(184 a + 65\right)\cdot 193^{2} + \left(54 a + 153\right)\cdot 193^{3} + \left(101 a + 147\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 159 + \left(82 a + 101\right)\cdot 193 + \left(170 a + 59\right)\cdot 193^{2} + \left(115 a + 108\right)\cdot 193^{3} + \left(50 a + 151\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 103 a + 18 + \left(113 a + 9\right)\cdot 193 + \left(8 a + 170\right)\cdot 193^{2} + \left(138 a + 23\right)\cdot 193^{3} + \left(91 a + 1\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 90\cdot 193 + 166\cdot 193^{2} + 70\cdot 193^{3} + 155\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 183 a + 169 + \left(110 a + 173\right)\cdot 193 + \left(22 a + 147\right)\cdot 193^{2} + \left(77 a + 53\right)\cdot 193^{3} + \left(142 a + 86\right)\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.