Properties

Label 9.353e3_379e3.10t32.1c1
Dimension 9
Group $S_6$
Conductor $ 353^{3} \cdot 379^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$2394648344674403= 353^{3} \cdot 379^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Odd
Determinant: 1.353_379.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 19 + \left(11 a + 4\right)\cdot 23 + \left(22 a + 7\right)\cdot 23^{2} + \left(11 a + 14\right)\cdot 23^{3} + \left(6 a + 16\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 18 + \left(15 a + 3\right)\cdot 23 + \left(22 a + 15\right)\cdot 23^{2} + \left(16 a + 2\right)\cdot 23^{3} + \left(2 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 17\cdot 23 + 19\cdot 23^{2} + 21\cdot 23^{3} + 2\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 + 19\cdot 23 + 9\cdot 23^{2} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 1 + \left(11 a + 14\right)\cdot 23 + 17\cdot 23^{2} + \left(11 a + 15\right)\cdot 23^{3} + \left(16 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 20 + \left(7 a + 9\right)\cdot 23 + 22\cdot 23^{2} + \left(6 a + 13\right)\cdot 23^{3} + \left(20 a + 13\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.