Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 401 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 401 }$: $ x^{2} + 396 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 195 a + 103 + \left(352 a + 27\right)\cdot 401 + \left(127 a + 120\right)\cdot 401^{2} + \left(73 a + 211\right)\cdot 401^{3} + \left(331 a + 187\right)\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 349 + 218\cdot 401 + 191\cdot 401^{2} + 127\cdot 401^{3} + 374\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 206 a + 276 + \left(48 a + 391\right)\cdot 401 + \left(273 a + 5\right)\cdot 401^{2} + \left(327 a + 49\right)\cdot 401^{3} + \left(69 a + 166\right)\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 371 + 317\cdot 401 + 306\cdot 401^{2} + 34\cdot 401^{3} + 14\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 62 a + 98 + \left(377 a + 214\right)\cdot 401 + \left(139 a + 328\right)\cdot 401^{2} + \left(163 a + 51\right)\cdot 401^{3} + \left(256 a + 72\right)\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 339 a + 7 + \left(23 a + 33\right)\cdot 401 + \left(261 a + 250\right)\cdot 401^{2} + \left(237 a + 327\right)\cdot 401^{3} + \left(144 a + 388\right)\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$9$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $15$ |
$2$ |
$(1,2)$ |
$-3$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.