Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 119 + 129\cdot 157 + 27\cdot 157^{2} + 55\cdot 157^{3} + 65\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 137 + 77\cdot 157 + 64\cdot 157^{2} + 115\cdot 157^{3} + 25\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 139 + 29\cdot 157 + 32\cdot 157^{2} + 97\cdot 157^{3} + 6\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 156 a + 20 + \left(84 a + 66\right)\cdot 157 + \left(15 a + 146\right)\cdot 157^{2} + \left(56 a + 142\right)\cdot 157^{3} + \left(55 a + 78\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 15 + \left(72 a + 21\right)\cdot 157 + \left(141 a + 139\right)\cdot 157^{2} + \left(100 a + 93\right)\cdot 157^{3} + \left(101 a + 142\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 44 + 146\cdot 157 + 60\cdot 157^{2} + 123\cdot 157^{3} + 151\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $9$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $15$ | $2$ | $(1,2)$ | $-3$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $40$ | $3$ | $(1,2,3)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.