Properties

Label 9.2e18_3e16.10t26.2
Dimension 9
Group $A_6$
Conductor $ 2^{18} \cdot 3^{16}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$A_6$
Conductor:$11284439629824= 2^{18} \cdot 3^{16} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 12 x^{3} - 9 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,9)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 3 + \left(38 a + 63\right)\cdot 67 + \left(5 a + 26\right)\cdot 67^{2} + \left(47 a + 2\right)\cdot 67^{3} + \left(42 a + 54\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 34 + \left(28 a + 26\right)\cdot 67 + \left(61 a + 10\right)\cdot 67^{2} + \left(19 a + 51\right)\cdot 67^{3} + \left(24 a + 43\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 33\cdot 67 + 21\cdot 67^{2} + 54\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 + 31\cdot 67 + 9\cdot 67^{2} + 27\cdot 67^{3} + 41\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 41 + \left(45 a + 27\right)\cdot 67 + \left(54 a + 13\right)\cdot 67^{2} + \left(34 a + 24\right)\cdot 67^{3} + \left(53 a + 40\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 9 + \left(21 a + 18\right)\cdot 67 + \left(12 a + 52\right)\cdot 67^{2} + \left(32 a + 41\right)\cdot 67^{3} + \left(13 a + 18\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$72$ $5$ $(1,2,3,4,5)$ $-1$
$72$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.