Properties

Label 9.2e12_61e3_683e3.10t32.1c1
Dimension 9
Group $S_6$
Conductor $ 2^{12} \cdot 61^{3} \cdot 683^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$296218080957427712= 2^{12} \cdot 61^{3} \cdot 683^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 4 x^{3} + 7 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Even
Determinant: 1.2e2_61_683.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 66 a + 14 + \left(106 a + 37\right)\cdot 107 + \left(48 a + 50\right)\cdot 107^{2} + \left(29 a + 17\right)\cdot 107^{3} + \left(90 a + 8\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 64 + 76\cdot 107 + \left(58 a + 32\right)\cdot 107^{2} + \left(77 a + 86\right)\cdot 107^{3} + \left(16 a + 18\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 a + 65 + \left(44 a + 68\right)\cdot 107 + \left(86 a + 69\right)\cdot 107^{2} + \left(93 a + 89\right)\cdot 107^{3} + \left(52 a + 45\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 32 + \left(62 a + 68\right)\cdot 107 + \left(20 a + 49\right)\cdot 107^{2} + \left(13 a + 57\right)\cdot 107^{3} + \left(54 a + 56\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 85 + 81\cdot 107 + 58\cdot 107^{2} + 17\cdot 107^{3} + 6\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 63 + 95\cdot 107 + 59\cdot 107^{2} + 52\cdot 107^{3} + 78\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.