Basic invariants
| Dimension: | $9$ |
| Group: | $S_6$ |
| Conductor: | \(34012224000000\)\(\medspace = 2^{12} \cdot 3^{12} \cdot 5^{6} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.2.52488000.3 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 20T145 |
| Parity: | even |
| Projective image: | $S_6$ |
| Projective field: | Galois closure of 6.2.52488000.3 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$:
\( x^{2} + 131x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 54 + 10\cdot 137 + 39\cdot 137^{3} + 72\cdot 137^{4} +O(137^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 34 + 6\cdot 137 + 23\cdot 137^{2} + 35\cdot 137^{3} + 64\cdot 137^{4} +O(137^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 58 a + \left(21 a + 71\right)\cdot 137 + \left(78 a + 112\right)\cdot 137^{2} + \left(7 a + 35\right)\cdot 137^{3} + \left(34 a + 126\right)\cdot 137^{4} +O(137^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 79 a + 74 + \left(115 a + 4\right)\cdot 137 + \left(58 a + 12\right)\cdot 137^{2} + \left(129 a + 3\right)\cdot 137^{3} + \left(102 a + 49\right)\cdot 137^{4} +O(137^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 80 + 84\cdot 137 + 120\cdot 137^{2} + 115\cdot 137^{3} + 7\cdot 137^{4} +O(137^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 35 + 97\cdot 137 + 5\cdot 137^{2} + 45\cdot 137^{3} + 91\cdot 137^{4} +O(137^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $9$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $-3$ |
| $15$ | $2$ | $(1,2)$ | $-3$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $40$ | $3$ | $(1,2,3)$ | $0$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |