Properties

Label 9.340...000.20t145.a
Dimension $9$
Group $S_6$
Conductor $3.401\times 10^{13}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:\(34012224000000\)\(\medspace = 2^{12} \cdot 3^{12} \cdot 5^{6} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.52488000.3
Galois orbit size: $1$
Smallest permutation container: 20T145
Parity: even
Projective image: $S_6$
Projective field: Galois closure of 6.2.52488000.3

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: \( x^{2} + 131x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 54 + 10\cdot 137 + 39\cdot 137^{3} + 72\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 34 + 6\cdot 137 + 23\cdot 137^{2} + 35\cdot 137^{3} + 64\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 58 a + \left(21 a + 71\right)\cdot 137 + \left(78 a + 112\right)\cdot 137^{2} + \left(7 a + 35\right)\cdot 137^{3} + \left(34 a + 126\right)\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 79 a + 74 + \left(115 a + 4\right)\cdot 137 + \left(58 a + 12\right)\cdot 137^{2} + \left(129 a + 3\right)\cdot 137^{3} + \left(102 a + 49\right)\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 80 + 84\cdot 137 + 120\cdot 137^{2} + 115\cdot 137^{3} + 7\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 35 + 97\cdot 137 + 5\cdot 137^{2} + 45\cdot 137^{3} + 91\cdot 137^{4} +O(137^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.