Properties

Label 9.2e10_7e6_31e4.10t26.2
Dimension 9
Group $A_6$
Conductor $ 2^{10} \cdot 7^{6} \cdot 31^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$A_6$
Conductor:$111258953860096= 2^{10} \cdot 7^{6} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 6 x^{3} - 14 x^{2} + 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,9)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 105 + \left(5 a + 70\right)\cdot 137 + \left(104 a + 67\right)\cdot 137^{2} + \left(124 a + 100\right)\cdot 137^{3} + \left(120 a + 76\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 113 + \left(58 a + 115\right)\cdot 137 + \left(92 a + 67\right)\cdot 137^{2} + \left(74 a + 37\right)\cdot 137^{3} + \left(5 a + 49\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 102 a + 49 + \left(78 a + 19\right)\cdot 137 + \left(44 a + 16\right)\cdot 137^{2} + \left(62 a + 119\right)\cdot 137^{3} + \left(131 a + 7\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 + 125\cdot 137 + 103\cdot 137^{2} + 91\cdot 137^{3} + 12\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 + 120\cdot 137 + 16\cdot 137^{2} + 2\cdot 137^{3} + 135\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 132 a + 135 + \left(131 a + 95\right)\cdot 137 + \left(32 a + 1\right)\cdot 137^{2} + \left(12 a + 60\right)\cdot 137^{3} + \left(16 a + 129\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$72$ $5$ $(1,2,3,4,5)$ $-1$
$72$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.