Properties

Label 9.264931e3.10t32.1c1
Dimension 9
Group $S_6$
Conductor $ 264931^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$18595092209666491= 264931^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + 2 x^{3} + x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Odd
Determinant: 1.264931.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 37 a + 11 + \left(12 a + 31\right)\cdot 41 + \left(33 a + 12\right)\cdot 41^{2} + \left(21 a + 6\right)\cdot 41^{3} + \left(13 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 40 + \left(28 a + 32\right)\cdot 41 + \left(7 a + 17\right)\cdot 41^{2} + \left(19 a + 38\right)\cdot 41^{3} + \left(27 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 29 + \left(25 a + 1\right)\cdot 41 + \left(17 a + 32\right)\cdot 41^{2} + \left(31 a + 6\right)\cdot 41^{3} + \left(13 a + 33\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 12 + \left(11 a + 32\right)\cdot 41 + \left(19 a + 38\right)\cdot 41^{2} + \left(10 a + 28\right)\cdot 41^{3} + \left(32 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 22 + \left(15 a + 12\right)\cdot 41 + \left(23 a + 18\right)\cdot 41^{2} + \left(9 a + 1\right)\cdot 41^{3} + \left(27 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 10 + \left(29 a + 12\right)\cdot 41 + \left(21 a + 3\right)\cdot 41^{2} + 30 a\cdot 41^{3} + \left(8 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.