Properties

Label 9.242467e6.20t145.1c1
Dimension 9
Group $S_6$
Conductor $ 242467^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$203196318095409260809686388402969= 242467^{6} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 + 30\cdot 53 + 11\cdot 53^{2} + 29\cdot 53^{3} + 48\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 9 + \left(15 a + 23\right)\cdot 53 + \left(14 a + 44\right)\cdot 53^{2} + 20 a\cdot 53^{3} + \left(28 a + 24\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 29\cdot 53 + 25\cdot 53^{2} + 18\cdot 53^{3} + 52\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 5\cdot 53 + 15\cdot 53^{2} + 36\cdot 53^{3} + 41\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 14 + \left(37 a + 45\right)\cdot 53 + \left(38 a + 32\right)\cdot 53^{2} + \left(32 a + 14\right)\cdot 53^{3} + \left(24 a + 11\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 24\cdot 53 + 29\cdot 53^{2} + 6\cdot 53^{3} + 34\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$-3$
$15$$2$$(1,2)$$-3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.