Properties

Label 9.142...563.10t32.a.a
Dimension $9$
Group $S_6$
Conductor $1.425\times 10^{16}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $9$
Group: $S_6$
Conductor: \(14254694598461563\)\(\medspace = 242467^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.4.242467.1
Galois orbit size: $1$
Smallest permutation container: $S_{6}$
Parity: odd
Determinant: 1.242467.2t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.4.242467.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{4} - x^{3} - 2x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 14 + 30\cdot 53 + 11\cdot 53^{2} + 29\cdot 53^{3} + 48\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 41 a + 9 + \left(15 a + 23\right)\cdot 53 + \left(14 a + 44\right)\cdot 53^{2} + 20 a\cdot 53^{3} + \left(28 a + 24\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 49 + 29\cdot 53 + 25\cdot 53^{2} + 18\cdot 53^{3} + 52\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 46 + 5\cdot 53 + 15\cdot 53^{2} + 36\cdot 53^{3} + 41\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 14 + \left(37 a + 45\right)\cdot 53 + \left(38 a + 32\right)\cdot 53^{2} + \left(32 a + 14\right)\cdot 53^{3} + \left(24 a + 11\right)\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 27 + 24\cdot 53 + 29\cdot 53^{2} + 6\cdot 53^{3} + 34\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$