Properties

Label 9.23e6_2551e6.20t145.1
Dimension 9
Group $S_6$
Conductor $ 23^{6} \cdot 2551^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$40797144596720710873311725089= 23^{6} \cdot 2551^{6} $
Artin number field: Splitting field of $f= x^{6} - x^{3} + x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 10 + \left(19 a + 45\right)\cdot 53 + \left(26 a + 21\right)\cdot 53^{2} + \left(12 a + 29\right)\cdot 53^{3} + \left(44 a + 28\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 50\cdot 53 + 33\cdot 53^{2} + 15\cdot 53^{3} + 25\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 48\cdot 53 + 28\cdot 53^{2} + 12\cdot 53^{3} + 22\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 25\cdot 53 + 15\cdot 53^{2} + 14\cdot 53^{3} + 36\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 33 + \left(33 a + 50\right)\cdot 53 + \left(26 a + 1\right)\cdot 53^{2} + 40 a\cdot 53^{3} + \left(8 a + 34\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 + 45\cdot 53 + 3\cdot 53^{2} + 34\cdot 53^{3} + 12\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.