Properties

Label 9.19e6_12553e6.20t145.1
Dimension 9
Group $S_6$
Conductor $ 19^{6} \cdot 12553^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$184080073330015207675123284684649= 19^{6} \cdot 12553^{6} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 4 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T145
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 21\cdot 103 + 58\cdot 103^{2} + 95\cdot 103^{3} + 23\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 65 a + 3 + \left(58 a + 76\right)\cdot 103 + \left(5 a + 17\right)\cdot 103^{2} + \left(34 a + 98\right)\cdot 103^{3} + \left(11 a + 65\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 a + 37 + \left(39 a + 100\right)\cdot 103 + \left(41 a + 2\right)\cdot 103^{2} + \left(54 a + 80\right)\cdot 103^{3} + \left(21 a + 29\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 + 60\cdot 103 + 54\cdot 103^{2} + 21\cdot 103^{3} + 46\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 68 + \left(44 a + 69\right)\cdot 103 + \left(97 a + 67\right)\cdot 103^{2} + \left(68 a + 23\right)\cdot 103^{3} + \left(91 a + 43\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 a + 93 + \left(63 a + 83\right)\cdot 103 + \left(61 a + 4\right)\cdot 103^{2} + \left(48 a + 93\right)\cdot 103^{3} + \left(81 a + 99\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $-3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.