Properties

Label 9.17e3_13259e3.10t32.1c1
Dimension 9
Group $S_6$
Conductor $ 17^{3} \cdot 13259^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$11451940316525827= 17^{3} \cdot 13259^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Odd
Determinant: 1.17_13259.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 72 + \left(68 a + 74\right)\cdot 83 + \left(60 a + 70\right)\cdot 83^{2} + \left(45 a + 70\right)\cdot 83^{3} + \left(73 a + 30\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 77 a + 78 + \left(14 a + 53\right)\cdot 83 + \left(22 a + 63\right)\cdot 83^{2} + \left(37 a + 55\right)\cdot 83^{3} + \left(9 a + 58\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 44\cdot 83 + 11\cdot 83^{2} + 3\cdot 83^{3} + 45\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 52 + \left(42 a + 41\right)\cdot 83 + \left(74 a + 7\right)\cdot 83^{2} + \left(46 a + 33\right)\cdot 83^{3} + \left(35 a + 33\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 76\cdot 83 + 55\cdot 83^{2} + 80\cdot 83^{3} + 58\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 12 + \left(40 a + 41\right)\cdot 83 + \left(8 a + 39\right)\cdot 83^{2} + \left(36 a + 5\right)\cdot 83^{3} + \left(47 a + 22\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.