Properties

Label 9.163e3_641e3.10t32.1
Dimension 9
Group $S_6$
Conductor $ 163^{3} \cdot 641^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$S_6$
Conductor:$1140609282846587= 163^{3} \cdot 641^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 2 x^{3} - 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 41 + \left(26 a + 50\right)\cdot 97 + \left(26 a + 33\right)\cdot 97^{2} + \left(58 a + 2\right)\cdot 97^{3} + \left(72 a + 34\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 18 + \left(8 a + 91\right)\cdot 97 + \left(12 a + 73\right)\cdot 97^{2} + \left(82 a + 75\right)\cdot 97^{3} + \left(40 a + 49\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 a + 78 + \left(60 a + 13\right)\cdot 97 + \left(63 a + 83\right)\cdot 97^{2} + \left(85 a + 53\right)\cdot 97^{3} + \left(83 a + 27\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 41 + \left(36 a + 14\right)\cdot 97 + \left(33 a + 86\right)\cdot 97^{2} + \left(11 a + 75\right)\cdot 97^{3} + \left(13 a + 25\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 72 a + 66 + \left(70 a + 51\right)\cdot 97 + \left(70 a + 33\right)\cdot 97^{2} + \left(38 a + 34\right)\cdot 97^{3} + \left(24 a + 48\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 67 a + 48 + \left(88 a + 69\right)\cdot 97 + \left(84 a + 77\right)\cdot 97^{2} + \left(14 a + 48\right)\cdot 97^{3} + \left(56 a + 8\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $-1$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.