Properties

Label 9.13e6_19e6.10t26.2
Dimension 9
Group $A_6$
Conductor $ 13^{6} \cdot 19^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$9$
Group:$A_6$
Conductor:$227081481823729= 13^{6} \cdot 19^{6} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 15 x^{3} - 15 x^{2} - 8 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,9)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 33 + \left(70 a + 4\right)\cdot 73 + \left(62 a + 45\right)\cdot 73^{2} + \left(59 a + 29\right)\cdot 73^{3} + \left(25 a + 36\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 44\cdot 73 + 38\cdot 73^{2} + 28\cdot 73^{3} + 22\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 48 + 50\cdot 73 + 26\cdot 73^{2} + 22\cdot 73^{3} + 41\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 14 + \left(58 a + 68\right)\cdot 73 + \left(71 a + 39\right)\cdot 73^{2} + \left(36 a + 49\right)\cdot 73^{3} + \left(22 a + 53\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 49 + \left(14 a + 61\right)\cdot 73 + \left(a + 50\right)\cdot 73^{2} + \left(36 a + 15\right)\cdot 73^{3} + \left(50 a + 11\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 67 a + 51 + \left(2 a + 62\right)\cdot 73 + \left(10 a + 17\right)\cdot 73^{2} + 13 a\cdot 73^{3} + \left(47 a + 54\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $9$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $0$
$40$ $3$ $(1,2,3)$ $0$
$90$ $4$ $(1,2,3,4)(5,6)$ $1$
$72$ $5$ $(1,2,3,4,5)$ $-1$
$72$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.