Properties

Label 8.8069e4.24t333.1
Dimension 8
Group $C_2^3:S_4$
Conductor $ 8069^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2^3:S_4$
Conductor:$4239150758955121= 8069^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{6} + x^{5} + x^{4} + x^{3} - 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T333
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 20 a^{2} + 8 a + 27 + \left(31 a^{2} + 36 a + 28\right)\cdot 47 + \left(3 a^{2} + 42 a + 33\right)\cdot 47^{2} + \left(33 a^{2} + 37 a + 42\right)\cdot 47^{3} + \left(12 a^{2} + 44\right)\cdot 47^{4} + \left(44 a^{2} + 5 a + 22\right)\cdot 47^{5} + \left(12 a^{2} + 39 a + 5\right)\cdot 47^{6} + \left(39 a^{2} + 45 a + 17\right)\cdot 47^{7} + \left(43 a^{2} + 42 a + 43\right)\cdot 47^{8} + \left(35 a^{2} + 42 a + 43\right)\cdot 47^{9} + \left(16 a^{2} + 28 a + 12\right)\cdot 47^{10} + \left(19 a^{2} + 3 a + 19\right)\cdot 47^{11} + \left(35 a^{2} + 38 a + 44\right)\cdot 47^{12} + \left(16 a^{2} + 25 a + 31\right)\cdot 47^{13} + \left(23 a^{2} + 21 a + 43\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 2 + 15\cdot 47 + 2\cdot 47^{2} + 35\cdot 47^{3} + 4\cdot 47^{4} + 27\cdot 47^{5} + 23\cdot 47^{6} + 27\cdot 47^{7} + 46\cdot 47^{8} + 8\cdot 47^{9} + 15\cdot 47^{10} + 16\cdot 47^{11} + 25\cdot 47^{12} + 21\cdot 47^{13} + 23\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 14 a^{2} + 15 + \left(14 a^{2} + 20 a + 41\right)\cdot 47 + \left(35 a^{2} + 5 a + 2\right)\cdot 47^{2} + \left(10 a^{2} + 7 a + 45\right)\cdot 47^{3} + \left(6 a^{2} + 18 a + 31\right)\cdot 47^{4} + \left(11 a^{2} + 18 a + 3\right)\cdot 47^{5} + \left(22 a^{2} + 27 a + 24\right)\cdot 47^{6} + \left(6 a^{2} + 41 a + 45\right)\cdot 47^{7} + \left(31 a^{2} + 43 a + 17\right)\cdot 47^{8} + \left(40 a^{2} + 38 a + 6\right)\cdot 47^{9} + \left(14 a^{2} + 12 a + 9\right)\cdot 47^{10} + \left(38 a^{2} + 39 a + 10\right)\cdot 47^{11} + \left(6 a^{2} + 11 a + 34\right)\cdot 47^{12} + \left(24 a^{2} + 4 a + 46\right)\cdot 47^{13} + \left(a^{2} + 23 a + 46\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 13 a^{2} + 39 a + 13 + \left(a^{2} + 37 a + 15\right)\cdot 47 + \left(8 a^{2} + 45 a + 42\right)\cdot 47^{2} + \left(3 a^{2} + a + 29\right)\cdot 47^{3} + \left(28 a^{2} + 28 a + 28\right)\cdot 47^{4} + \left(38 a^{2} + 23 a + 11\right)\cdot 47^{5} + \left(11 a^{2} + 27 a + 3\right)\cdot 47^{6} + \left(a^{2} + 6 a + 35\right)\cdot 47^{7} + \left(19 a^{2} + 7 a + 40\right)\cdot 47^{8} + \left(17 a^{2} + 12 a + 6\right)\cdot 47^{9} + \left(15 a^{2} + 5 a + 10\right)\cdot 47^{10} + \left(36 a^{2} + 4 a + 6\right)\cdot 47^{11} + \left(4 a^{2} + 44 a + 30\right)\cdot 47^{12} + \left(6 a^{2} + 16 a + 10\right)\cdot 47^{13} + \left(22 a^{2} + 2 a + 41\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 28 a^{2} + 35 a + 45 + \left(20 a^{2} + 38 a + 12\right)\cdot 47 + \left(8 a^{2} + 38 a + 45\right)\cdot 47^{2} + \left(37 a^{2} + 34 a\right)\cdot 47^{3} + \left(43 a^{2} + 33 a + 27\right)\cdot 47^{4} + \left(26 a^{2} + 33 a + 18\right)\cdot 47^{5} + \left(33 a^{2} + 21 a + 8\right)\cdot 47^{6} + \left(10 a^{2} + 9 a + 31\right)\cdot 47^{7} + \left(33 a^{2} + 3 a + 32\right)\cdot 47^{8} + \left(13 a^{2} + 2 a + 24\right)\cdot 47^{9} + \left(27 a + 46\right)\cdot 47^{10} + \left(22 a^{2} + 30 a\right)\cdot 47^{11} + \left(8 a^{2} + 27 a + 31\right)\cdot 47^{12} + \left(29 a^{2} + 14 a + 32\right)\cdot 47^{13} + \left(44 a^{2} + 30 a + 17\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 13 a^{2} + 25 a + 15 + \left(27 a^{2} + 21 a + 26\right)\cdot 47 + \left(36 a^{2} + 38 a + 7\right)\cdot 47^{2} + \left(39 a^{2} + 33 a + 6\right)\cdot 47^{3} + \left(23 a^{2} + 18 a + 34\right)\cdot 47^{4} + \left(43 a^{2} + 23 a + 4\right)\cdot 47^{5} + \left(13 a^{2} + 18 a + 16\right)\cdot 47^{6} + \left(30 a + 10\right)\cdot 47^{7} + \left(29 a^{2} + 41 a + 24\right)\cdot 47^{8} + \left(16 a^{2} + 38 a + 30\right)\cdot 47^{9} + \left(3 a^{2} + 43 a + 5\right)\cdot 47^{10} + \left(26 a^{2} + 28 a + 9\right)\cdot 47^{11} + \left(31 a + 15\right)\cdot 47^{12} + \left(a^{2} + 22 a + 23\right)\cdot 47^{13} + \left(37 a^{2} + 5 a + 2\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 24 + 31\cdot 47 + 21\cdot 47^{2} + 20\cdot 47^{3} + 24\cdot 47^{4} + 40\cdot 47^{5} + 25\cdot 47^{6} + 33\cdot 47^{7} + 46\cdot 47^{8} + 35\cdot 47^{9} + 2\cdot 47^{10} + 30\cdot 47^{11} + 11\cdot 47^{12} + 13\cdot 47^{13} + 12\cdot 47^{14} +O\left(47^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 34 a + 1 + \left(46 a^{2} + 33 a + 17\right)\cdot 47 + \left(a^{2} + 16 a + 32\right)\cdot 47^{2} + \left(17 a^{2} + 25 a + 7\right)\cdot 47^{3} + \left(26 a^{2} + 41 a + 39\right)\cdot 47^{4} + \left(23 a^{2} + 36 a + 11\right)\cdot 47^{5} + \left(46 a^{2} + 6 a + 34\right)\cdot 47^{6} + \left(35 a^{2} + 7 a + 34\right)\cdot 47^{7} + \left(31 a^{2} + 2 a + 29\right)\cdot 47^{8} + \left(16 a^{2} + 6 a + 30\right)\cdot 47^{9} + \left(43 a^{2} + 23 a + 38\right)\cdot 47^{10} + \left(45 a^{2} + 34 a + 1\right)\cdot 47^{11} + \left(37 a^{2} + 34 a + 43\right)\cdot 47^{12} + \left(16 a^{2} + 9 a + 7\right)\cdot 47^{13} + \left(12 a^{2} + 11 a\right)\cdot 47^{14} +O\left(47^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,3,2)(4,6,7,8)$
$(1,4,3,2)(5,6,7,8)$
$(3,5)(4,6)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-8$
$6$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$6$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$6$ $2$ $(1,8)(4,5)$ $0$
$12$ $2$ $(3,5)(4,6)$ $0$
$12$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$32$ $3$ $(1,5,2)(4,7,8)$ $-1$
$12$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$24$ $4$ $(1,5,3,2)(4,6,7,8)$ $0$
$24$ $4$ $(1,4,3,2)(5,6,7,8)$ $0$
$24$ $4$ $(1,8)(3,4,6,5)$ $0$
$32$ $6$ $(1,4,7,8,5,2)(3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.