Properties

Label 8.7e6_149e4.36t555.1c2
Dimension 8
Group $A_6$
Conductor $ 7^{6} \cdot 149^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$57987356893249= 7^{6} \cdot 149^{4} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 7 x^{3} + 19 x^{2} + 7 x - 15 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 75 + 41\cdot 113 + 108\cdot 113^{3} + 100\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 83 a + 18 + \left(7 a + 4\right)\cdot 113 + \left(69 a + 93\right)\cdot 113^{2} + \left(a + 62\right)\cdot 113^{3} + \left(39 a + 112\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 107 + 94\cdot 113 + 45\cdot 113^{2} + 26\cdot 113^{3} + 28\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 a + 110 + \left(105 a + 13\right)\cdot 113 + \left(43 a + 10\right)\cdot 113^{2} + \left(111 a + 13\right)\cdot 113^{3} + \left(73 a + 14\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 64 + \left(20 a + 37\right)\cdot 113 + \left(107 a + 83\right)\cdot 113^{2} + \left(64 a + 10\right)\cdot 113^{3} + \left(37 a + 18\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 93 a + 78 + \left(92 a + 33\right)\cdot 113 + \left(5 a + 106\right)\cdot 113^{2} + \left(48 a + 4\right)\cdot 113^{3} + \left(75 a + 65\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.