Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{4} + 2 x^{2} + 11 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a^{3} + 18 a^{2} + 2 a + 9 + \left(8 a^{3} + 3 a^{2} + 7 a + 7\right)\cdot 19 + \left(14 a^{3} + 9 a^{2} + 9 a + 17\right)\cdot 19^{2} + \left(2 a^{3} + 6 a^{2} + 4 a + 13\right)\cdot 19^{3} + \left(4 a^{3} + 3 a^{2} + a + 2\right)\cdot 19^{4} + \left(2 a^{3} + 4 a^{2} + 11 a + 8\right)\cdot 19^{5} + \left(18 a^{3} + 17 a^{2} + 10 a + 11\right)\cdot 19^{6} + \left(18 a^{3} + 3 a^{2} + a + 17\right)\cdot 19^{7} + \left(5 a^{3} + 13 a^{2} + 14 a + 7\right)\cdot 19^{8} + \left(16 a^{3} + 14 a^{2} + 15 a + 13\right)\cdot 19^{9} + \left(8 a^{3} + 12 a^{2} + 9 a + 17\right)\cdot 19^{10} + \left(4 a^{3} + 3 a^{2} + 15 a + 14\right)\cdot 19^{11} + \left(8 a^{3} + 7 a^{2} + 6 a + 8\right)\cdot 19^{12} + \left(14 a^{3} + 13 a^{2} + 2 a + 10\right)\cdot 19^{13} + \left(12 a^{3} + 18 a^{2} + 16 a + 6\right)\cdot 19^{14} + \left(11 a^{3} + 4 a^{2} + 8 a\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a^{3} + 4 a^{2} + 3 a + 18 + \left(5 a^{3} + 9 a^{2} + 15 a + 2\right)\cdot 19 + \left(16 a^{3} + 17 a + 1\right)\cdot 19^{2} + \left(11 a^{3} + 5 a^{2} + 11 a + 18\right)\cdot 19^{3} + \left(4 a^{3} + 2 a^{2} + 16 a + 11\right)\cdot 19^{4} + \left(14 a^{3} + 15 a^{2} + 3 a + 3\right)\cdot 19^{5} + \left(13 a + 12\right)\cdot 19^{6} + \left(11 a^{3} + a^{2} + 14 a + 14\right)\cdot 19^{7} + \left(12 a^{2} + 13 a + 11\right)\cdot 19^{8} + \left(3 a^{3} + 6 a^{2} + 13 a + 4\right)\cdot 19^{9} + \left(13 a^{3} + a^{2} + 6 a + 18\right)\cdot 19^{10} + \left(4 a^{3} + 12 a^{2} + 7 a + 3\right)\cdot 19^{11} + \left(18 a^{3} + 11 a^{2} + 18 a + 6\right)\cdot 19^{12} + \left(5 a^{3} + 8 a^{2} + 17 a + 13\right)\cdot 19^{13} + \left(9 a^{3} + 13 a^{2} + 8 a + 6\right)\cdot 19^{14} + \left(9 a^{3} + 18 a^{2} + 14 a + 17\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 + 8\cdot 19 + 9\cdot 19^{2} + 19^{3} + 6\cdot 19^{4} + 3\cdot 19^{5} + 11\cdot 19^{6} + 6\cdot 19^{7} + 11\cdot 19^{8} + 5\cdot 19^{9} + 12\cdot 19^{10} + 4\cdot 19^{11} + 15\cdot 19^{12} + 6\cdot 19^{14} +O\left(19^{ 16 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a^{3} + 7 a^{2} + 9 + \left(9 a^{3} + 11 a^{2} + 10\right)\cdot 19 + \left(15 a^{3} + 16 a^{2} + 18 a + 15\right)\cdot 19^{2} + \left(13 a^{3} + 5 a^{2} + 5 a + 1\right)\cdot 19^{3} + \left(12 a^{3} + 7 a^{2} + 10 a + 3\right)\cdot 19^{4} + \left(17 a^{3} + 13 a^{2} + 4 a + 11\right)\cdot 19^{5} + \left(13 a^{3} + 13 a^{2} + 17 a + 5\right)\cdot 19^{6} + \left(8 a^{3} + 2 a^{2} + a + 16\right)\cdot 19^{7} + \left(3 a^{3} + a^{2} + 12 a\right)\cdot 19^{8} + \left(3 a^{3} + 9 a^{2} + 4 a + 13\right)\cdot 19^{9} + \left(8 a^{3} + 7 a^{2} + 7 a + 11\right)\cdot 19^{10} + \left(13 a^{3} + 12 a^{2} + 9 a + 14\right)\cdot 19^{11} + \left(16 a^{3} + 9 a^{2} + 2 a + 5\right)\cdot 19^{12} + \left(18 a^{3} + 16 a^{2} + 5 a + 4\right)\cdot 19^{13} + \left(13 a^{3} + 15 a^{2} + 13 a\right)\cdot 19^{14} + \left(18 a^{3} + 17 a^{2} + 17 a + 12\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 a^{3} + 3 a^{2} + 13 a + 14 + \left(3 a^{3} + 8 a^{2} + 8 a + 9\right)\cdot 19 + \left(16 a^{3} + 4 a^{2} + 11 a + 17\right)\cdot 19^{2} + \left(11 a^{3} + 7 a^{2} + 9 a + 8\right)\cdot 19^{3} + \left(8 a^{3} + 5 a^{2} + 9 a + 8\right)\cdot 19^{4} + \left(6 a^{3} + 15 a^{2} + 14 a + 11\right)\cdot 19^{5} + \left(4 a^{3} + 16 a^{2} + 15 a + 6\right)\cdot 19^{6} + \left(12 a^{3} + 7 a + 11\right)\cdot 19^{7} + \left(18 a^{3} + 16 a^{2} + a + 10\right)\cdot 19^{8} + \left(2 a^{3} + a^{2} + 9 a + 4\right)\cdot 19^{9} + \left(3 a^{3} + 3 a^{2} + 3 a + 13\right)\cdot 19^{10} + \left(16 a^{3} + 6 a^{2} + 17 a + 4\right)\cdot 19^{11} + \left(14 a^{3} + 9 a^{2} + 5 a + 13\right)\cdot 19^{12} + \left(3 a^{3} + 3 a^{2} + 6 a + 7\right)\cdot 19^{13} + \left(13 a^{3} + 14 a^{2} + a + 10\right)\cdot 19^{14} + \left(9 a^{3} + 14 a^{2} + 17 a + 17\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 18 a^{3} + 3 a^{2} + 6 a + 2 + \left(6 a^{3} + 15 a^{2} + 9\right)\cdot 19 + \left(6 a^{3} + 10 a^{2} + a + 4\right)\cdot 19^{2} + \left(11 a^{3} + 12 a^{2} + 5 a + 5\right)\cdot 19^{3} + \left(10 a^{3} + 12 a^{2} + 13 a + 8\right)\cdot 19^{4} + \left(6 a^{3} + 18 a^{2} + 9 a + 1\right)\cdot 19^{5} + \left(13 a^{3} + 10 a^{2} + 11 a + 18\right)\cdot 19^{6} + \left(7 a^{3} + 6 a^{2} + 8 a + 12\right)\cdot 19^{7} + \left(14 a^{3} + 6 a^{2} + 15 a + 8\right)\cdot 19^{8} + \left(16 a^{3} + 8 a^{2} + 15 a + 15\right)\cdot 19^{9} + \left(17 a^{3} + 11 a^{2} + 9 a + 14\right)\cdot 19^{10} + \left(5 a^{3} + 8 a^{2} + 3 a + 17\right)\cdot 19^{11} + \left(14 a^{3} + 5 a + 18\right)\cdot 19^{12} + \left(a^{3} + 15 a^{2} + 16 a + 11\right)\cdot 19^{13} + \left(10 a^{3} + 7 a^{2} + 9 a + 11\right)\cdot 19^{14} + \left(14 a^{3} + 18 a^{2} + a + 13\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 2 a^{3} + 13 a^{2} + 17 a + 2 + \left(9 a^{3} + 4 a^{2} + 6 a + 8\right)\cdot 19 + \left(10 a^{3} + 4 a^{2} + 12 a + 9\right)\cdot 19^{2} + \left(9 a^{3} + 14 a^{2} + 16 a + 3\right)\cdot 19^{3} + \left(4 a^{3} + 18 a^{2} + 17 a + 13\right)\cdot 19^{4} + \left(10 a^{3} + 7 a^{2} + a + 15\right)\cdot 19^{5} + \left(2 a^{3} + 4 a^{2} + 18 a + 6\right)\cdot 19^{6} + \left(5 a^{3} + 13 a^{2} + 18 a + 11\right)\cdot 19^{7} + \left(7 a^{3} + 3 a^{2} + 8 a + 1\right)\cdot 19^{8} + \left(4 a^{3} + 10 a^{2} + 16 a + 5\right)\cdot 19^{9} + \left(10 a^{3} + 7 a^{2} + 8 a\right)\cdot 19^{10} + \left(5 a^{3} + 5 a^{2} + 9 a + 9\right)\cdot 19^{11} + \left(17 a^{3} + 10 a^{2} + 6 a + 6\right)\cdot 19^{12} + \left(a^{3} + a^{2} + 9 a + 1\right)\cdot 19^{13} + \left(16 a^{3} + 4 a^{2} + 3 a + 1\right)\cdot 19^{14} + \left(11 a^{3} + 8 a^{2} + 3 a + 12\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 10 a^{3} + 14 a^{2} + 17 a + 4 + \left(18 a^{3} + 10 a^{2} + 2 a + 5\right)\cdot 19 + \left(13 a^{2} + 16 a + 10\right)\cdot 19^{2} + \left(12 a^{3} + 11 a^{2} + 18 a + 5\right)\cdot 19^{3} + \left(14 a^{3} + 16 a^{2} + 13 a + 12\right)\cdot 19^{4} + \left(3 a^{3} + 18 a^{2} + 2 a + 16\right)\cdot 19^{5} + \left(2 a^{3} + 11 a^{2} + 7\right)\cdot 19^{6} + \left(18 a^{3} + 7 a^{2} + a + 14\right)\cdot 19^{7} + \left(17 a^{3} + 2 a^{2} + 7 a\right)\cdot 19^{8} + \left(a^{3} + 13 a^{2} + 16 a + 12\right)\cdot 19^{9} + \left(8 a^{3} + 10 a^{2} + 14 a + 4\right)\cdot 19^{10} + \left(11 a^{3} + a + 12\right)\cdot 19^{11} + \left(2 a^{2} + a + 16\right)\cdot 19^{12} + \left(18 a^{3} + 6 a^{2} + 13 a + 13\right)\cdot 19^{13} + \left(a^{3} + 16 a^{2} + 10 a + 14\right)\cdot 19^{14} + \left(2 a^{3} + 18 a^{2} + 10 a + 1\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 13 a^{3} + 14 a^{2} + 18 a + 13 + \left(14 a^{3} + 12 a^{2} + 15 a + 14\right)\cdot 19 + \left(14 a^{3} + 16 a^{2} + 8 a + 9\right)\cdot 19^{2} + \left(2 a^{3} + 12 a^{2} + 3 a + 17\right)\cdot 19^{3} + \left(16 a^{3} + 9 a^{2} + 12 a + 9\right)\cdot 19^{4} + \left(14 a^{3} + a^{2} + 8 a + 4\right)\cdot 19^{5} + \left(a^{3} + 8 a + 15\right)\cdot 19^{6} + \left(13 a^{3} + 2 a^{2} + 2 a + 8\right)\cdot 19^{7} + \left(7 a^{3} + 2 a^{2} + 3 a + 3\right)\cdot 19^{8} + \left(8 a^{3} + 12 a^{2} + 3 a + 2\right)\cdot 19^{9} + \left(6 a^{3} + 2 a^{2} + 15 a + 2\right)\cdot 19^{10} + \left(14 a^{3} + 8 a^{2} + 11 a + 13\right)\cdot 19^{11} + \left(4 a^{3} + 6 a^{2} + 10 a + 3\right)\cdot 19^{12} + \left(11 a^{3} + 11 a^{2} + 5 a + 12\right)\cdot 19^{13} + \left(17 a^{3} + 4 a^{2} + 12 a + 18\right)\cdot 19^{14} + \left(16 a^{3} + 12 a^{2} + 2 a\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,6,2,9)(3,8,7,5)$ |
| $(1,8,9)(2,6,5)(3,7,4)$ |
| $(1,3,9,5,2,7,6,8)$ |
| $(1,2,4)(3,8,6)(5,7,9)$ |
| $(1,2)(3,7)(5,8)(6,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $8$ |
| $9$ | $2$ | $(2,4)(3,5)(6,7)(8,9)$ | $0$ |
| $8$ | $3$ | $(1,8,9)(2,6,5)(3,7,4)$ | $-1$ |
| $9$ | $4$ | $(2,5,4,3)(6,8,7,9)$ | $0$ |
| $9$ | $4$ | $(2,3,4,5)(6,9,7,8)$ | $0$ |
| $9$ | $8$ | $(2,8,5,7,4,9,3,6)$ | $0$ |
| $9$ | $8$ | $(2,7,3,8,4,6,5,9)$ | $0$ |
| $9$ | $8$ | $(2,9,5,6,4,8,3,7)$ | $0$ |
| $9$ | $8$ | $(2,6,3,9,4,7,5,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.