Properties

Label 8.6883e4.24t333.3c1
Dimension 8
Group $C_2^3:S_4$
Conductor $ 6883^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2^3:S_4$
Conductor:$2244455908224721= 6883^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} - 5 x^{5} + 7 x^{4} - 5 x^{3} + 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T333
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 26 a^{2} + 19 a + 1 + \left(28 a^{2} + 38 a + 38\right)\cdot 41 + \left(14 a^{2} + 30 a + 22\right)\cdot 41^{2} + \left(7 a^{2} + 33 a + 19\right)\cdot 41^{3} + \left(40 a^{2} + 16 a + 36\right)\cdot 41^{4} + \left(12 a^{2} + 23 a + 4\right)\cdot 41^{5} + \left(26 a^{2} + 22 a + 27\right)\cdot 41^{6} + \left(36 a^{2} + 39 a + 18\right)\cdot 41^{7} + \left(3 a^{2} + 9 a + 38\right)\cdot 41^{8} + \left(12 a^{2} + 19 a + 6\right)\cdot 41^{9} + \left(14 a^{2} + 18 a + 23\right)\cdot 41^{10} + \left(32 a^{2} + 24 a + 36\right)\cdot 41^{11} + \left(11 a^{2} + 3 a + 24\right)\cdot 41^{12} + \left(28 a^{2} + 26 a + 14\right)\cdot 41^{13} + \left(27 a^{2} + 17 a + 23\right)\cdot 41^{14} + \left(22 a^{2} + 26 a + 34\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 37 a^{2} + 2 a + 30 + \left(26 a^{2} + 25 a + 26\right)\cdot 41 + \left(34 a^{2} + 38 a + 33\right)\cdot 41^{2} + \left(19 a^{2} + 13 a + 16\right)\cdot 41^{3} + \left(27 a^{2} + 24 a + 29\right)\cdot 41^{4} + \left(25 a^{2} + 18 a + 31\right)\cdot 41^{5} + \left(5 a^{2} + 7 a + 23\right)\cdot 41^{6} + \left(15 a^{2} + 20 a + 32\right)\cdot 41^{7} + \left(23 a^{2} + 25 a + 14\right)\cdot 41^{8} + \left(23 a^{2} + 12 a + 20\right)\cdot 41^{9} + \left(30 a + 35\right)\cdot 41^{10} + \left(32 a^{2} + 26 a + 25\right)\cdot 41^{11} + \left(17 a^{2} + 20 a + 40\right)\cdot 41^{12} + \left(32 a^{2} + 22 a + 35\right)\cdot 41^{13} + \left(33 a^{2} + 30 a + 12\right)\cdot 41^{14} + \left(19 a^{2} + 38 a\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 15 a^{2} + 27 a + 29 + \left(12 a^{2} + 16 a + 30\right)\cdot 41 + \left(21 a^{2} + 25 a + 24\right)\cdot 41^{2} + \left(18 a^{2} + 11 a + 29\right)\cdot 41^{3} + \left(18 a^{2} + 13 a + 9\right)\cdot 41^{4} + \left(37 a^{2} + 20 a + 12\right)\cdot 41^{5} + \left(17 a^{2} + 25 a + 18\right)\cdot 41^{6} + \left(35 a^{2} + 19 a + 32\right)\cdot 41^{7} + \left(23 a^{2} + 22 a + 28\right)\cdot 41^{8} + \left(10 a^{2} + 30 a + 11\right)\cdot 41^{9} + \left(8 a^{2} + 39 a + 13\right)\cdot 41^{10} + \left(38 a^{2} + 11 a + 16\right)\cdot 41^{11} + \left(14 a^{2} + 20 a + 11\right)\cdot 41^{12} + \left(23 a^{2} + 13 a + 16\right)\cdot 41^{13} + \left(4 a^{2} + 14 a + 34\right)\cdot 41^{14} + \left(26 a^{2} + 36 a + 31\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 18 + 6\cdot 41 + 13\cdot 41^{2} + 2\cdot 41^{3} + 4\cdot 41^{4} + 21\cdot 41^{5} + 20\cdot 41^{7} + 20\cdot 41^{8} + 23\cdot 41^{9} + 19\cdot 41^{10} + 27\cdot 41^{11} + 36\cdot 41^{12} + 4\cdot 41^{13} + 3\cdot 41^{14} + 18\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 16 + 33\cdot 41 + 38\cdot 41^{2} + 24\cdot 41^{3} + 15\cdot 41^{4} + 28\cdot 41^{5} + 33\cdot 41^{6} + 11\cdot 41^{7} + 38\cdot 41^{8} + 6\cdot 41^{9} + 39\cdot 41^{10} + 36\cdot 41^{11} + 30\cdot 41^{12} + 5\cdot 41^{13} + 11\cdot 41^{14} + 3\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{2} + 6 a + 19 + \left(8 a^{2} + 6 a + 24\right)\cdot 41 + \left(5 a^{2} + 10 a + 16\right)\cdot 41^{2} + \left(5 a^{2} + 2 a + 4\right)\cdot 41^{3} + \left(11 a^{2} + 17 a + 17\right)\cdot 41^{4} + \left(35 a^{2} + 15 a + 33\right)\cdot 41^{5} + \left(31 a^{2} + 14 a + 30\right)\cdot 41^{6} + \left(23 a + 35\right)\cdot 41^{7} + \left(33 a^{2} + 38 a + 16\right)\cdot 41^{8} + \left(5 a^{2} + 31 a + 16\right)\cdot 41^{9} + \left(4 a^{2} + 26 a + 16\right)\cdot 41^{10} + \left(34 a^{2} + 39 a + 10\right)\cdot 41^{11} + \left(6 a^{2} + 31 a + 35\right)\cdot 41^{12} + \left(10 a^{2} + 39 a + 29\right)\cdot 41^{13} + \left(21 a^{2} + 13 a + 32\right)\cdot 41^{14} + \left(27 a^{2} + 29 a + 37\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{2} + 16 a + 13 + \left(4 a^{2} + 37 a + 35\right)\cdot 41 + \left(21 a^{2} + 40 a + 40\right)\cdot 41^{2} + \left(28 a^{2} + 4 a + 19\right)\cdot 41^{3} + \left(30 a^{2} + 7 a + 16\right)\cdot 41^{4} + \left(33 a^{2} + 2 a + 32\right)\cdot 41^{5} + \left(23 a^{2} + 4 a + 11\right)\cdot 41^{6} + \left(3 a^{2} + 19 a + 10\right)\cdot 41^{7} + \left(4 a^{2} + 33 a + 11\right)\cdot 41^{8} + \left(23 a^{2} + 30 a + 14\right)\cdot 41^{9} + \left(22 a^{2} + 36 a + 1\right)\cdot 41^{10} + \left(15 a^{2} + 17 a + 39\right)\cdot 41^{11} + \left(22 a^{2} + 5 a + 31\right)\cdot 41^{12} + \left(2 a^{2} + 16 a + 24\right)\cdot 41^{13} + \left(33 a^{2} + 9 a + 40\right)\cdot 41^{14} + \left(31 a^{2} + 26 a + 26\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 30 a^{2} + 12 a + 39 + \left(a^{2} + 40 a + 9\right)\cdot 41 + \left(26 a^{2} + 17 a + 14\right)\cdot 41^{2} + \left(2 a^{2} + 15 a + 5\right)\cdot 41^{3} + \left(36 a^{2} + 3 a + 35\right)\cdot 41^{4} + \left(18 a^{2} + 2 a + 40\right)\cdot 41^{5} + \left(17 a^{2} + 8 a + 17\right)\cdot 41^{6} + \left(31 a^{2} + a + 2\right)\cdot 41^{7} + \left(34 a^{2} + 34 a + 36\right)\cdot 41^{8} + \left(6 a^{2} + 38 a + 22\right)\cdot 41^{9} + \left(32 a^{2} + 11 a + 15\right)\cdot 41^{10} + \left(11 a^{2} + 2 a + 12\right)\cdot 41^{11} + \left(8 a^{2} + 34\right)\cdot 41^{12} + \left(26 a^{2} + 5 a + 31\right)\cdot 41^{13} + \left(2 a^{2} + 37 a + 5\right)\cdot 41^{14} + \left(36 a^{2} + 6 a + 11\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7,5)(2,4,8,3)$
$(1,3)(6,8)$
$(1,3,2,4)(5,8,6,7)$
$(1,6)(3,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$8$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-8$
$6$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$6$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$6$$2$$(3,6)(4,5)$$0$
$12$$2$$(1,3)(6,8)$$0$
$12$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$32$$3$$(1,3,4)(5,8,6)$$-1$
$12$$4$$(1,7,8,2)(3,4,6,5)$$0$
$24$$4$$(1,6,7,5)(2,4,8,3)$$0$
$24$$4$$(1,6,7,4)(2,5,8,3)$$0$
$24$$4$$(2,7)(3,4,6,5)$$0$
$32$$6$$(1,5,3,8,4,6)(2,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.