Properties

Label 8.6571e4.24t333.2
Dimension 8
Group $C_2^3:S_4$
Conductor $ 6571^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2^3:S_4$
Conductor:$1864343224597681= 6571^{4} $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T333
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{3} + 3 x + 51 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 34 + \left(27 a^{2} + 45 a + 29\right)\cdot 53 + \left(34 a^{2} + 16 a + 51\right)\cdot 53^{2} + \left(36 a^{2} + 17 a + 1\right)\cdot 53^{3} + \left(a^{2} + 17 a + 47\right)\cdot 53^{4} + \left(34 a^{2} + 35 a + 37\right)\cdot 53^{5} + \left(51 a^{2} + 52 a + 49\right)\cdot 53^{6} + \left(25 a^{2} + 4 a + 48\right)\cdot 53^{7} + \left(42 a^{2} + 29 a + 5\right)\cdot 53^{8} + \left(51 a + 9\right)\cdot 53^{9} + \left(23 a^{2} + 6 a + 18\right)\cdot 53^{10} + \left(7 a^{2} + 32 a + 30\right)\cdot 53^{11} + \left(6 a^{2} + 36 a + 30\right)\cdot 53^{12} + \left(28 a^{2} + 22 a + 24\right)\cdot 53^{13} + \left(29 a^{2} + 35 a + 24\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 33 a + 36 + \left(15 a^{2} + 2 a + 5\right)\cdot 53 + \left(49 a^{2} + 15 a + 28\right)\cdot 53^{2} + \left(43 a + 36\right)\cdot 53^{3} + \left(41 a^{2} + 42 a + 19\right)\cdot 53^{4} + \left(36 a^{2} + 10 a + 43\right)\cdot 53^{5} + \left(12 a^{2} + 46 a + 24\right)\cdot 53^{6} + \left(22 a^{2} + 11 a + 41\right)\cdot 53^{7} + \left(5 a^{2} + 34 a + 37\right)\cdot 53^{8} + \left(49 a^{2} + 10 a + 52\right)\cdot 53^{9} + \left(45 a^{2} + 28 a + 10\right)\cdot 53^{10} + \left(42 a^{2} + 16 a + 48\right)\cdot 53^{11} + \left(32 a^{2} + 24 a + 30\right)\cdot 53^{12} + \left(8 a^{2} + 30 a + 38\right)\cdot 53^{13} + \left(44 a^{2} + 3 a\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 52 a^{2} + 31 a + 32 + \left(10 a^{2} + 4 a + 50\right)\cdot 53 + \left(22 a^{2} + 21 a + 26\right)\cdot 53^{2} + \left(15 a^{2} + 45 a + 12\right)\cdot 53^{3} + \left(10 a^{2} + 45 a + 11\right)\cdot 53^{4} + \left(35 a^{2} + 6 a + 40\right)\cdot 53^{5} + \left(41 a^{2} + 7 a + 29\right)\cdot 53^{6} + \left(4 a^{2} + 36 a + 6\right)\cdot 53^{7} + \left(5 a^{2} + 42 a + 37\right)\cdot 53^{8} + \left(3 a^{2} + 43 a + 13\right)\cdot 53^{9} + \left(37 a^{2} + 17 a + 46\right)\cdot 53^{10} + \left(2 a^{2} + 4 a + 20\right)\cdot 53^{11} + \left(14 a^{2} + 45 a + 46\right)\cdot 53^{12} + \left(16 a^{2} + 52 a\right)\cdot 53^{13} + \left(32 a^{2} + 13 a + 30\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 48 + 38\cdot 53 + 5\cdot 53^{2} + 29\cdot 53^{3} + 10\cdot 53^{4} + 22\cdot 53^{5} + 20\cdot 53^{6} + 26\cdot 53^{7} + 52\cdot 53^{8} + 3\cdot 53^{9} + 44\cdot 53^{10} + 19\cdot 53^{11} + 4\cdot 53^{12} + 28\cdot 53^{13} + 17\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 21 + 15\cdot 53 + 3\cdot 53^{2} + 25\cdot 53^{3} + 53^{4} + 41\cdot 53^{5} + 52\cdot 53^{6} + 49\cdot 53^{7} + 34\cdot 53^{8} + 42\cdot 53^{9} + 46\cdot 53^{10} + 12\cdot 53^{11} + 35\cdot 53^{12} + 38\cdot 53^{13} + 47\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 30 a^{2} + 50 a + 3 + \left(20 a^{2} + 48 a + 12\right)\cdot 53 + \left(23 a^{2} + 29 a + 8\right)\cdot 53^{2} + \left(10 a^{2} + 26 a + 21\right)\cdot 53^{3} + \left(38 a + 23\right)\cdot 53^{4} + \left(43 a^{2} + 46 a + 24\right)\cdot 53^{5} + \left(42 a^{2} + 34 a + 26\right)\cdot 53^{6} + \left(14 a^{2} + 4 a + 42\right)\cdot 53^{7} + \left(5 a^{2} + 39 a + 42\right)\cdot 53^{8} + \left(7 a^{2} + 26 a + 8\right)\cdot 53^{9} + \left(43 a^{2} + a + 13\right)\cdot 53^{10} + \left(15 a^{2} + 2 a + 5\right)\cdot 53^{11} + \left(18 a^{2} + 37 a + 5\right)\cdot 53^{12} + \left(50 a^{2} + 45 a + 4\right)\cdot 53^{13} + \left(24 a^{2} + 47 a + 45\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 35 a^{2} + 16 a + 13 + \left(30 a^{2} + 2 a + 32\right)\cdot 53 + \left(31 a^{2} + 27 a + 24\right)\cdot 53^{2} + \left(16 a^{2} + 26 a + 33\right)\cdot 53^{3} + \left(a^{2} + 26 a + 25\right)\cdot 53^{4} + \left(17 a^{2} + 2 a + 25\right)\cdot 53^{5} + \left(2 a^{2} + 32 a + 51\right)\cdot 53^{6} + \left(9 a^{2} + 16 a + 30\right)\cdot 53^{7} + \left(19 a^{2} + 8 a + 17\right)\cdot 53^{8} + \left(42 a^{2} + 18 a + 26\right)\cdot 53^{9} + \left(39 a^{2} + 48 a + 6\right)\cdot 53^{10} + \left(30 a^{2} + 49 a + 35\right)\cdot 53^{11} + \left(3 a^{2} + 37 a + 28\right)\cdot 53^{12} + \left(51 a^{2} + 17 a + 5\right)\cdot 53^{13} + \left(16 a^{2} + 30 a + 29\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 41 a^{2} + 40 a + 25 + \left(a^{2} + a + 27\right)\cdot 53 + \left(51 a^{2} + 49 a + 10\right)\cdot 53^{2} + \left(25 a^{2} + 52 a + 52\right)\cdot 53^{3} + \left(51 a^{2} + 40 a + 19\right)\cdot 53^{4} + \left(45 a^{2} + 3 a + 30\right)\cdot 53^{5} + \left(7 a^{2} + 39 a + 9\right)\cdot 53^{6} + \left(29 a^{2} + 31 a + 18\right)\cdot 53^{7} + \left(28 a^{2} + 5 a + 36\right)\cdot 53^{8} + \left(3 a^{2} + 8 a + 1\right)\cdot 53^{9} + \left(23 a^{2} + 3 a + 26\right)\cdot 53^{10} + \left(6 a^{2} + a + 39\right)\cdot 53^{11} + \left(31 a^{2} + 31 a + 30\right)\cdot 53^{12} + \left(4 a^{2} + 42 a + 18\right)\cdot 53^{13} + \left(11 a^{2} + 27 a + 17\right)\cdot 53^{14} +O\left(53^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,2)(5,7,8,6)$
$(1,3,4,7)(2,8,6,5)$
$(1,7)(2,8)$
$(1,2)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-8$
$6$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$6$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$6$ $2$ $(1,8)(3,6)$ $0$
$12$ $2$ $(1,7)(2,8)$ $0$
$12$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$32$ $3$ $(2,5,3)(4,6,7)$ $-1$
$12$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$24$ $4$ $(1,3,4,2)(5,7,8,6)$ $0$
$24$ $4$ $(1,7,5,6)(2,4,3,8)$ $0$
$24$ $4$ $(1,7,8,2)(3,6)$ $0$
$32$ $6$ $(1,8)(2,6,5,7,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.