Properties

Label 8.5e6_769e4.21t14.1
Dimension 8
Group $\GL(3,2)$
Conductor $ 5^{6} \cdot 769^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$\GL(3,2)$
Conductor:$5464184880015625= 5^{6} \cdot 769^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + x^{5} - 2 x^{3} + 5 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{2} + a + 8 + \left(12 a^{2} + 10 a + 8\right)\cdot 19 + \left(6 a^{2} + 3 a + 12\right)\cdot 19^{2} + \left(4 a^{2} + 2 a + 18\right)\cdot 19^{3} + \left(16 a^{2} + 8 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 2\cdot 19 + 5\cdot 19^{2} + 2\cdot 19^{3} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 6 a + 10 + \left(2 a^{2} + 17\right)\cdot 19 + \left(17 a + 3\right)\cdot 19^{2} + \left(11 a^{2} + a + 15\right)\cdot 19^{3} + \left(18 a^{2} + 2 a + 14\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a^{2} + 14 a + 2 + \left(7 a^{2} + 2 a + 13\right)\cdot 19 + \left(10 a^{2} + 16 a + 9\right)\cdot 19^{2} + \left(18 a^{2} + 3 a + 18\right)\cdot 19^{3} + \left(17 a^{2} + a + 12\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 4 a + 18 + \left(18 a^{2} + 6 a + 17\right)\cdot 19 + \left(a^{2} + 18 a + 18\right)\cdot 19^{2} + \left(15 a^{2} + 12 a + 2\right)\cdot 19^{3} + \left(3 a^{2} + 9 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a^{2} + 11 a + 10 + \left(5 a^{2} + 10 a + 6\right)\cdot 19 + \left(5 a^{2} + 2 a + 11\right)\cdot 19^{2} + \left(6 a^{2} + 14 a + 2\right)\cdot 19^{3} + \left(5 a^{2} + a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 2 a + 8 + \left(11 a^{2} + 8 a + 10\right)\cdot 19 + \left(13 a^{2} + 18 a + 14\right)\cdot 19^{2} + \left(a^{2} + 2 a + 15\right)\cdot 19^{3} + \left(14 a^{2} + 15 a + 2\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,5)(2,7)$
$(2,5,3,4)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$21$ $2$ $(2,3)(4,5)$ $0$
$56$ $3$ $(1,3,2)(4,6,5)$ $-1$
$42$ $4$ $(2,5,3,4)(6,7)$ $0$
$24$ $7$ $(1,5,3,4,7,6,2)$ $1$
$24$ $7$ $(1,4,2,3,6,5,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.