Properties

Label 8.5e6_653e4.21t14.2c1
Dimension 8
Group $\GL(3,2)$
Conductor $ 5^{6} \cdot 653^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$\GL(3,2)$
Conductor:$2841009926265625= 5^{6} \cdot 653^{4} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 2 x^{4} + 3 x^{3} + 7 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 15 a^{2} + 16 a + 15 + \left(9 a^{2} + 15 a + 12\right)\cdot 17 + \left(a^{2} + 3 a + 5\right)\cdot 17^{2} + \left(3 a^{2} + 5 a + 1\right)\cdot 17^{3} + \left(10 a + 7\right)\cdot 17^{4} + \left(8 a^{2} + 9 a + 11\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{2} + 3 a + 15 + \left(12 a^{2} + 8 a\right)\cdot 17 + \left(13 a^{2} + 7 a + 10\right)\cdot 17^{2} + \left(4 a^{2} + 11 a + 8\right)\cdot 17^{3} + \left(13 a^{2} + 5 a + 9\right)\cdot 17^{4} + \left(4 a^{2} + a + 9\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 a^{2} + 11 a + 9 + \left(7 a^{2} + a + 3\right)\cdot 17 + \left(12 a^{2} + 2 a + 9\right)\cdot 17^{2} + \left(9 a^{2} + 16 a\right)\cdot 17^{3} + \left(8 a^{2} + 6 a + 12\right)\cdot 17^{4} + \left(6 a^{2} + 8 a + 10\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 7 a + 7 + \left(10 a^{2} + 9 a + 7\right)\cdot 17 + \left(3 a^{2} + 1\right)\cdot 17^{2} + \left(5 a^{2} + 5 a + 14\right)\cdot 17^{3} + \left(12 a^{2} + 9 a + 3\right)\cdot 17^{4} + \left(3 a^{2} + 5 a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 16 a^{2} + 3 a + 11 + \left(13 a^{2} + 7 a + 7\right)\cdot 17 + \left(7 a^{2} + 7 a\right)\cdot 17^{2} + \left(2 a^{2} + 6 a + 7\right)\cdot 17^{3} + \left(12 a^{2} + 4 a + 14\right)\cdot 17^{4} + \left(5 a^{2} + 7 a + 15\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 16 a^{2} + 11 a + 10 + \left(13 a^{2} + 8 a + 15\right)\cdot 17 + \left(11 a^{2} + 12 a + 6\right)\cdot 17^{2} + \left(8 a^{2} + 6 a + 16\right)\cdot 17^{3} + \left(4 a^{2} + 14 a + 9\right)\cdot 17^{4} + \left(5 a^{2} + a + 9\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 2 + 3\cdot 17 + 3\cdot 17^{3} + 11\cdot 17^{4} + 13\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,4)(3,5)$
$(1,2)(4,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$8$
$21$$2$$(1,4)(3,5)$$0$
$56$$3$$(1,7,4)(3,6,5)$$-1$
$42$$4$$(1,2)(4,5,7,6)$$0$
$24$$7$$(1,5,3,7,6,4,2)$$1$
$24$$7$$(1,7,2,3,4,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.