Properties

Label 8.5e4_1231e4.21t14.1c1
Dimension 8
Group $\GL(3,2)$
Conductor $ 5^{4} \cdot 1231^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$\GL(3,2)$
Conductor:$1435199350200625= 5^{4} \cdot 1231^{4} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - 6 x^{4} + x^{3} + 6 x^{2} + 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{3} + x + 28 $
Roots:
$r_{ 1 }$ $=$ $ 29 a^{2} + 5 + \left(30 a^{2} + 17 a + 4\right)\cdot 31 + \left(13 a^{2} + 26 a + 20\right)\cdot 31^{2} + \left(24 a^{2} + 25 a + 16\right)\cdot 31^{3} + \left(28 a^{2} + 11 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 4\cdot 31 + 23\cdot 31^{2} + 27\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a^{2} + 29 a + 25 + \left(9 a^{2} + 2 a + 10\right)\cdot 31 + \left(14 a^{2} + 18 a + 20\right)\cdot 31^{2} + \left(20 a^{2} + 10 a + 3\right)\cdot 31^{3} + \left(27 a^{2} + 3 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 18 a + \left(26 a^{2} + 25 a + 22\right)\cdot 31 + \left(17 a^{2} + 24 a + 3\right)\cdot 31^{2} + \left(18 a^{2} + 17 a + 13\right)\cdot 31^{3} + \left(22 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{2} + 20 a + 20 + \left(28 a^{2} + 5 a + 2\right)\cdot 31 + \left(8 a^{2} + 8\right)\cdot 31^{2} + \left(2 a^{2} + 19 a + 2\right)\cdot 31^{3} + \left(22 a^{2} + 3 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 a^{2} + 24 a + 28 + \left(7 a^{2} + 30 a + 19\right)\cdot 31 + \left(4 a^{2} + 5 a + 25\right)\cdot 31^{2} + \left(10 a^{2} + 25 a + 17\right)\cdot 31^{3} + \left(8 a^{2} + 4 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 2 a + 20 + \left(21 a^{2} + 11 a + 28\right)\cdot 31 + \left(2 a^{2} + 17 a + 22\right)\cdot 31^{2} + \left(17 a^{2} + 25 a + 11\right)\cdot 31^{3} + \left(5 a^{2} + 15 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,4,5,6)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$8$
$21$$2$$(1,4)(2,3)$$0$
$56$$3$$(2,7,5)(3,4,6)$$-1$
$42$$4$$(1,7)(2,4,5,6)$$0$
$24$$7$$(1,7,4,5,6,3,2)$$1$
$24$$7$$(1,5,2,4,3,7,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.