Properties

Label 8.3e2_7e2_563e4.24t1151.1
Dimension 8
Group $C_2 \wr S_4$
Conductor $ 3^{2} \cdot 7^{2} \cdot 563^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2 \wr S_4$
Conductor:$44306982009801= 3^{2} \cdot 7^{2} \cdot 563^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + x^{4} + x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T1151
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 26.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 26 + \left(16 a + 25\right)\cdot 29 + \left(25 a + 10\right)\cdot 29^{2} + \left(5 a + 6\right)\cdot 29^{3} + \left(22 a + 8\right)\cdot 29^{4} + \left(15 a + 28\right)\cdot 29^{5} + \left(14 a + 6\right)\cdot 29^{6} + \left(6 a + 10\right)\cdot 29^{7} + \left(3 a + 18\right)\cdot 29^{8} + \left(3 a + 13\right)\cdot 29^{9} + \left(17 a + 8\right)\cdot 29^{10} + \left(3 a + 13\right)\cdot 29^{11} + \left(8 a + 21\right)\cdot 29^{12} + \left(13 a + 7\right)\cdot 29^{13} + \left(2 a + 9\right)\cdot 29^{14} + \left(24 a + 10\right)\cdot 29^{15} + a\cdot 29^{16} + \left(27 a + 17\right)\cdot 29^{17} + \left(5 a + 22\right)\cdot 29^{18} + \left(24 a + 11\right)\cdot 29^{19} + \left(18 a + 14\right)\cdot 29^{20} + \left(5 a + 22\right)\cdot 29^{21} + \left(4 a + 19\right)\cdot 29^{22} + \left(28 a + 4\right)\cdot 29^{23} + \left(21 a + 10\right)\cdot 29^{24} + \left(13 a + 28\right)\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 2 }$ $=$ $ 3 + 19\cdot 29 + 20\cdot 29^{2} + 5\cdot 29^{3} + 14\cdot 29^{4} + 8\cdot 29^{5} + 7\cdot 29^{6} + 12\cdot 29^{7} + 15\cdot 29^{8} + 26\cdot 29^{9} + 25\cdot 29^{10} + 13\cdot 29^{11} + 19\cdot 29^{12} + 26\cdot 29^{13} + 8\cdot 29^{14} + 9\cdot 29^{15} + 21\cdot 29^{16} + 21\cdot 29^{17} + 7\cdot 29^{18} + 27\cdot 29^{19} + 27\cdot 29^{20} + 9\cdot 29^{21} + 23\cdot 29^{22} + 26\cdot 29^{23} + 12\cdot 29^{24} + 2\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 12 + \left(2 a + 2\right)\cdot 29 + \left(12 a + 24\right)\cdot 29^{2} + \left(8 a + 6\right)\cdot 29^{3} + \left(27 a + 27\right)\cdot 29^{4} + \left(4 a + 3\right)\cdot 29^{5} + 16\cdot 29^{6} + \left(14 a + 10\right)\cdot 29^{7} + \left(14 a + 27\right)\cdot 29^{8} + \left(23 a + 18\right)\cdot 29^{9} + \left(11 a + 3\right)\cdot 29^{10} + \left(8 a + 21\right)\cdot 29^{11} + \left(4 a + 23\right)\cdot 29^{12} + \left(12 a + 2\right)\cdot 29^{13} + \left(28 a + 9\right)\cdot 29^{14} + \left(14 a + 18\right)\cdot 29^{15} + \left(17 a + 19\right)\cdot 29^{16} + \left(28 a + 6\right)\cdot 29^{17} + \left(a + 7\right)\cdot 29^{18} + \left(17 a + 18\right)\cdot 29^{19} + \left(7 a + 5\right)\cdot 29^{20} + \left(18 a + 17\right)\cdot 29^{21} + \left(16 a + 8\right)\cdot 29^{22} + \left(11 a + 16\right)\cdot 29^{23} + \left(26 a + 10\right)\cdot 29^{24} + \left(28 a + 20\right)\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 14 + \left(24 a + 9\right)\cdot 29 + \left(23 a + 5\right)\cdot 29^{2} + \left(9 a + 1\right)\cdot 29^{3} + \left(10 a + 26\right)\cdot 29^{4} + \left(26 a + 7\right)\cdot 29^{5} + \left(14 a + 14\right)\cdot 29^{6} + \left(28 a + 20\right)\cdot 29^{7} + \left(2 a + 15\right)\cdot 29^{8} + \left(2 a + 6\right)\cdot 29^{9} + \left(24 a + 10\right)\cdot 29^{10} + \left(4 a + 19\right)\cdot 29^{11} + \left(17 a + 28\right)\cdot 29^{12} + \left(25 a + 27\right)\cdot 29^{13} + 5\cdot 29^{14} + \left(24 a + 17\right)\cdot 29^{15} + \left(6 a + 15\right)\cdot 29^{16} + 12 a\cdot 29^{17} + \left(8 a + 26\right)\cdot 29^{18} + 15 a\cdot 29^{19} + \left(11 a + 19\right)\cdot 29^{20} + \left(20 a + 14\right)\cdot 29^{21} + \left(25 a + 24\right)\cdot 29^{22} + \left(3 a + 13\right)\cdot 29^{23} + 27\cdot 29^{24} + \left(13 a + 17\right)\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 20 + \left(26 a + 25\right)\cdot 29 + \left(16 a + 23\right)\cdot 29^{2} + \left(20 a + 7\right)\cdot 29^{3} + \left(a + 10\right)\cdot 29^{4} + \left(24 a + 1\right)\cdot 29^{5} + \left(28 a + 12\right)\cdot 29^{6} + \left(14 a + 22\right)\cdot 29^{7} + \left(14 a + 27\right)\cdot 29^{8} + \left(5 a + 5\right)\cdot 29^{9} + \left(17 a + 10\right)\cdot 29^{10} + \left(20 a + 22\right)\cdot 29^{11} + \left(24 a + 7\right)\cdot 29^{12} + \left(16 a + 1\right)\cdot 29^{13} + 23\cdot 29^{14} + \left(14 a + 6\right)\cdot 29^{15} + \left(11 a + 5\right)\cdot 29^{16} + 16\cdot 29^{17} + \left(27 a + 17\right)\cdot 29^{18} + \left(11 a + 14\right)\cdot 29^{19} + \left(21 a + 26\right)\cdot 29^{20} + \left(10 a + 13\right)\cdot 29^{21} + \left(12 a + 15\right)\cdot 29^{22} + \left(17 a + 28\right)\cdot 29^{23} + \left(2 a + 14\right)\cdot 29^{24} + 22\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 4 + \left(4 a + 20\right)\cdot 29 + \left(5 a + 12\right)\cdot 29^{2} + \left(19 a + 26\right)\cdot 29^{3} + \left(18 a + 9\right)\cdot 29^{4} + \left(2 a + 13\right)\cdot 29^{5} + \left(14 a + 4\right)\cdot 29^{6} + 3\cdot 29^{7} + \left(26 a + 2\right)\cdot 29^{8} + \left(26 a + 14\right)\cdot 29^{9} + \left(4 a + 12\right)\cdot 29^{10} + \left(24 a + 19\right)\cdot 29^{11} + \left(11 a + 22\right)\cdot 29^{12} + \left(3 a + 22\right)\cdot 29^{13} + \left(28 a + 13\right)\cdot 29^{14} + \left(4 a + 20\right)\cdot 29^{15} + \left(22 a + 25\right)\cdot 29^{16} + \left(16 a + 25\right)\cdot 29^{17} + \left(20 a + 26\right)\cdot 29^{18} + \left(13 a + 10\right)\cdot 29^{19} + \left(17 a + 3\right)\cdot 29^{20} + \left(8 a + 18\right)\cdot 29^{21} + \left(3 a + 16\right)\cdot 29^{22} + \left(25 a + 7\right)\cdot 29^{23} + \left(28 a + 24\right)\cdot 29^{24} + \left(15 a + 24\right)\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 7 }$ $=$ $ 10 + 4\cdot 29 + 12\cdot 29^{2} + 22\cdot 29^{3} + 22\cdot 29^{4} + 25\cdot 29^{5} + 19\cdot 29^{6} + 8\cdot 29^{7} + 10\cdot 29^{8} + 4\cdot 29^{9} + 12\cdot 29^{10} + 21\cdot 29^{11} + 20\cdot 29^{12} + 18\cdot 29^{13} + 8\cdot 29^{14} + 21\cdot 29^{15} + 13\cdot 29^{16} + 22\cdot 29^{17} + 11\cdot 29^{18} + 21\cdot 29^{19} + 21\cdot 29^{20} + 16\cdot 29^{21} + 29^{22} + 22\cdot 29^{23} + 10\cdot 29^{24} + 11\cdot 29^{25} +O\left(29^{ 26 }\right)$
$r_{ 8 }$ $=$ $ 17 a + 28 + \left(12 a + 8\right)\cdot 29 + \left(3 a + 6\right)\cdot 29^{2} + \left(23 a + 10\right)\cdot 29^{3} + \left(6 a + 26\right)\cdot 29^{4} + \left(13 a + 26\right)\cdot 29^{5} + \left(14 a + 5\right)\cdot 29^{6} + \left(22 a + 28\right)\cdot 29^{7} + \left(25 a + 27\right)\cdot 29^{8} + \left(25 a + 25\right)\cdot 29^{9} + \left(11 a + 3\right)\cdot 29^{10} + \left(25 a + 14\right)\cdot 29^{11} + 20 a\cdot 29^{12} + \left(15 a + 8\right)\cdot 29^{13} + \left(26 a + 8\right)\cdot 29^{14} + \left(4 a + 12\right)\cdot 29^{15} + \left(27 a + 14\right)\cdot 29^{16} + \left(a + 5\right)\cdot 29^{17} + \left(23 a + 25\right)\cdot 29^{18} + \left(4 a + 10\right)\cdot 29^{19} + \left(10 a + 26\right)\cdot 29^{20} + \left(23 a + 2\right)\cdot 29^{21} + \left(24 a + 6\right)\cdot 29^{22} + 25\cdot 29^{23} + \left(7 a + 4\right)\cdot 29^{24} + \left(15 a + 17\right)\cdot 29^{25} +O\left(29^{ 26 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(2,4)(5,7)$
$(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-8$
$4$ $2$ $(1,8)$ $4$
$4$ $2$ $(1,8)(3,6)(4,5)$ $-4$
$6$ $2$ $(1,8)(2,7)$ $0$
$12$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$12$ $2$ $(2,4)(5,7)$ $0$
$12$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $0$
$24$ $2$ $(1,8)(2,4)(5,7)$ $0$
$32$ $3$ $(1,3,2)(6,7,8)$ $-1$
$12$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$12$ $4$ $(2,4,7,5)$ $0$
$12$ $4$ $(1,6,8,3)(2,7)(4,5)$ $0$
$24$ $4$ $(1,7,8,2)(3,4)(5,6)$ $0$
$24$ $4$ $(1,8)(2,4,7,5)$ $0$
$48$ $4$ $(1,3,2,4)(5,8,6,7)$ $0$
$32$ $6$ $(1,5,6,8,4,3)$ $-1$
$32$ $6$ $(1,3,2)(4,5)(6,7,8)$ $1$
$32$ $6$ $(1,6,7,8,3,2)(4,5)$ $1$
$48$ $8$ $(1,5,7,6,8,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.