Properties

Label 8.3e18_7e6.36t555.1c1
Dimension 8
Group $A_6$
Conductor $ 3^{18} \cdot 7^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$45579633110361= 3^{18} \cdot 7^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} + 17 x^{3} - 57 x^{2} + 69 x - 47 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 151 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 151 }$: $ x^{2} + 149 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 88 + 65\cdot 151 + 70\cdot 151^{2} + 123\cdot 151^{3} + 34\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 107 + \left(99 a + 53\right)\cdot 151 + \left(93 a + 9\right)\cdot 151^{2} + \left(55 a + 123\right)\cdot 151^{3} + \left(150 a + 85\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 48 + \left(8 a + 21\right)\cdot 151 + \left(91 a + 117\right)\cdot 151^{2} + \left(126 a + 50\right)\cdot 151^{3} + \left(43 a + 92\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 a + 70 + \left(51 a + 44\right)\cdot 151 + \left(57 a + 97\right)\cdot 151^{2} + \left(95 a + 140\right)\cdot 151^{3} + 28\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 + 92\cdot 151 + 18\cdot 151^{2} + 104\cdot 151^{3} + 6\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 138 a + 74 + \left(142 a + 24\right)\cdot 151 + \left(59 a + 140\right)\cdot 151^{2} + \left(24 a + 61\right)\cdot 151^{3} + \left(107 a + 53\right)\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$72$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.