Properties

Label 8.3e18_5e12.36t555.2
Dimension 8
Group $A_6$
Conductor $ 3^{18} \cdot 5^{12}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$94585080322265625= 3^{18} \cdot 5^{12} $
Artin number field: Splitting field of $f= x^{6} - 75 x^{3} - 405 x + 900 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 53 a + 39 + \left(81 a + 17\right)\cdot 89 + \left(34 a + 9\right)\cdot 89^{2} + \left(66 a + 73\right)\cdot 89^{3} + \left(7 a + 10\right)\cdot 89^{4} + \left(74 a + 7\right)\cdot 89^{5} + \left(79 a + 35\right)\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 51 + \left(83 a + 63\right)\cdot 89 + \left(35 a + 75\right)\cdot 89^{2} + \left(10 a + 85\right)\cdot 89^{3} + \left(a + 46\right)\cdot 89^{4} + \left(55 a + 1\right)\cdot 89^{5} + \left(5 a + 44\right)\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 36 a + 54 + \left(7 a + 1\right)\cdot 89 + \left(54 a + 83\right)\cdot 89^{2} + \left(22 a + 57\right)\cdot 89^{3} + \left(81 a + 87\right)\cdot 89^{4} + \left(14 a + 72\right)\cdot 89^{5} + \left(9 a + 74\right)\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 + 35\cdot 89 + 67\cdot 89^{2} + 13\cdot 89^{3} + 37\cdot 89^{4} + 53\cdot 89^{5} + 51\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 19 + 45\cdot 89 + 54\cdot 89^{2} + 2\cdot 89^{3} + 40\cdot 89^{4} + 13\cdot 89^{5} + 33\cdot 89^{6} +O\left(89^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 82 a + 11 + \left(5 a + 15\right)\cdot 89 + \left(53 a + 66\right)\cdot 89^{2} + \left(78 a + 33\right)\cdot 89^{3} + \left(87 a + 44\right)\cdot 89^{4} + \left(33 a + 29\right)\cdot 89^{5} + \left(83 a + 28\right)\cdot 89^{6} +O\left(89^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.