Basic invariants
| Dimension: | $8$ |
| Group: | $A_6$ |
| Conductor: | \(10509453369140625\)\(\medspace = 3^{16} \cdot 5^{12} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 6.2.284765625.3 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $A_6$ |
| Parity: | even |
| Determinant: | 1.1.1t1.a.a |
| Projective image: | $A_6$ |
| Projective stem field: | Galois closure of 6.2.284765625.3 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - 5x^{3} + 45x^{2} - 99x - 15 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$:
\( x^{2} + 126x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 95 a + 57 + \left(10 a + 13\right)\cdot 127 + \left(10 a + 29\right)\cdot 127^{2} + \left(23 a + 48\right)\cdot 127^{3} + \left(17 a + 2\right)\cdot 127^{4} + \left(2 a + 31\right)\cdot 127^{5} +O(127^{6})\)
|
| $r_{ 2 }$ | $=$ |
\( 15 + 55\cdot 127 + 61\cdot 127^{2} + 79\cdot 127^{3} + 35\cdot 127^{4} + 7\cdot 127^{5} +O(127^{6})\)
|
| $r_{ 3 }$ | $=$ |
\( 32 a + 25 + \left(116 a + 56\right)\cdot 127 + \left(116 a + 28\right)\cdot 127^{2} + \left(103 a + 61\right)\cdot 127^{3} + \left(109 a + 123\right)\cdot 127^{4} + \left(124 a + 15\right)\cdot 127^{5} +O(127^{6})\)
|
| $r_{ 4 }$ | $=$ |
\( 72 + 79\cdot 127 + 121\cdot 127^{2} + 51\cdot 127^{3} + 67\cdot 127^{4} + 51\cdot 127^{5} +O(127^{6})\)
|
| $r_{ 5 }$ | $=$ |
\( 94 a + 59 + \left(40 a + 51\right)\cdot 127 + \left(71 a + 118\right)\cdot 127^{2} + \left(33 a + 88\right)\cdot 127^{3} + \left(63 a + 124\right)\cdot 127^{4} + \left(3 a + 103\right)\cdot 127^{5} +O(127^{6})\)
|
| $r_{ 6 }$ | $=$ |
\( 33 a + 26 + \left(86 a + 125\right)\cdot 127 + \left(55 a + 21\right)\cdot 127^{2} + \left(93 a + 51\right)\cdot 127^{3} + \left(63 a + 27\right)\cdot 127^{4} + \left(123 a + 44\right)\cdot 127^{5} +O(127^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $8$ | |
| $45$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ | |
| $40$ | $3$ | $(1,2,3)$ | $-1$ | |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ | |
| $72$ | $5$ | $(1,2,3,4,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ | |
| $72$ | $5$ | $(1,3,4,5,2)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |