Properties

Label 8.3e16_5e12.36t555.1
Dimension 8
Group $A_6$
Conductor $ 3^{16} \cdot 5^{12}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$10509453369140625= 3^{16} \cdot 5^{12} $
Artin number field: Splitting field of $f= x^{6} - 5 x^{3} + 45 x^{2} - 99 x - 15 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 95 a + 57 + \left(10 a + 13\right)\cdot 127 + \left(10 a + 29\right)\cdot 127^{2} + \left(23 a + 48\right)\cdot 127^{3} + \left(17 a + 2\right)\cdot 127^{4} + \left(2 a + 31\right)\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 55\cdot 127 + 61\cdot 127^{2} + 79\cdot 127^{3} + 35\cdot 127^{4} + 7\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 25 + \left(116 a + 56\right)\cdot 127 + \left(116 a + 28\right)\cdot 127^{2} + \left(103 a + 61\right)\cdot 127^{3} + \left(109 a + 123\right)\cdot 127^{4} + \left(124 a + 15\right)\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 72 + 79\cdot 127 + 121\cdot 127^{2} + 51\cdot 127^{3} + 67\cdot 127^{4} + 51\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 94 a + 59 + \left(40 a + 51\right)\cdot 127 + \left(71 a + 118\right)\cdot 127^{2} + \left(33 a + 88\right)\cdot 127^{3} + \left(63 a + 124\right)\cdot 127^{4} + \left(3 a + 103\right)\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 26 + \left(86 a + 125\right)\cdot 127 + \left(55 a + 21\right)\cdot 127^{2} + \left(93 a + 51\right)\cdot 127^{3} + \left(63 a + 27\right)\cdot 127^{4} + \left(123 a + 44\right)\cdot 127^{5} +O\left(127^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.