Properties

Label 8.3e16_19e6.36t555.2
Dimension 8
Group $A_6$
Conductor $ 3^{16} \cdot 19^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$2025170913606201= 3^{16} \cdot 19^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 8 x^{3} + 9 x^{2} - 9 x + 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 42\cdot 311 + 169\cdot 311^{2} + 275\cdot 311^{3} + 188\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 178 + 66\cdot 311 + 83\cdot 311^{2} + 306\cdot 311^{3} + 283\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 224 + 261\cdot 311 + 143\cdot 311^{2} + 74\cdot 311^{3} + 94\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 261 + 310\cdot 311 + 19\cdot 311^{2} + 227\cdot 311^{3} + 110\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 271 + 309\cdot 311 + 283\cdot 311^{2} + 257\cdot 311^{3} + 5\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 302 + 252\cdot 311 + 232\cdot 311^{2} + 102\cdot 311^{3} + 249\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.