Properties

Label 8.3e16_19e6.36t555.1
Dimension 8
Group $A_6$
Conductor $ 3^{16} \cdot 19^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$2025170913606201= 3^{16} \cdot 19^{6} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 3 x^{3} + 21 x^{2} + 27 x - 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 43 + 189\cdot 311 + 85\cdot 311^{2} + 102\cdot 311^{3} + 254\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 + 213\cdot 311 + 224\cdot 311^{2} + 64\cdot 311^{3} + 205\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 148 + 300\cdot 311 + 57\cdot 311^{2} + 280\cdot 311^{3} + 228\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 150 + 188\cdot 311 + 251\cdot 311^{2} + 311^{3} + 219\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 218 + 26\cdot 311 + 105\cdot 311^{2} + 103\cdot 311^{3} + 270\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 307 + 14\cdot 311 + 208\cdot 311^{2} + 69\cdot 311^{3} + 66\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.