Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 95 + 81\cdot 101 + 30\cdot 101^{2} + 62\cdot 101^{3} + 50\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 66 a + 59 + \left(45 a + 55\right)\cdot 101 + \left(47 a + 81\right)\cdot 101^{2} + \left(83 a + 27\right)\cdot 101^{3} + \left(37 a + 55\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 a + 56 + \left(40 a + 89\right)\cdot 101 + \left(83 a + 13\right)\cdot 101^{2} + \left(26 a + 76\right)\cdot 101^{3} + 41\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 82 a + 31 + \left(60 a + 29\right)\cdot 101 + \left(17 a + 4\right)\cdot 101^{2} + \left(74 a + 100\right)\cdot 101^{3} + \left(100 a + 15\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 42 + 76\cdot 101 + 47\cdot 101^{2} + 25\cdot 101^{3} + 16\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 35 a + 20 + \left(55 a + 71\right)\cdot 101 + \left(53 a + 23\right)\cdot 101^{2} + \left(17 a + 11\right)\cdot 101^{3} + \left(63 a + 22\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$8$ |
$8$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
$0$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
$-1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$0$ |
$0$ |
| $72$ |
$5$ |
$(1,2,3,4,5)$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
| $72$ |
$5$ |
$(1,3,4,5,2)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.