Properties

Label 8.3e10_41e6.24t332.3c1
Dimension 8
Group $Q_8:S_4$
Conductor $ 3^{10} \cdot 41^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$Q_8:S_4$
Conductor:$280488905326809= 3^{10} \cdot 41^{6} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 3 x^{5} + 6 x^{4} - 3 x^{3} - 10 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T332
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 + 41\cdot 67 + 34\cdot 67^{2} + 41\cdot 67^{3} + 16\cdot 67^{4} + 21\cdot 67^{5} + 15\cdot 67^{6} + 54\cdot 67^{7} + 49\cdot 67^{8} + 56\cdot 67^{9} + 66\cdot 67^{10} + 65\cdot 67^{11} + 64\cdot 67^{12} + 49\cdot 67^{13} + 41\cdot 67^{14} + 9\cdot 67^{15} + 35\cdot 67^{16} + 22\cdot 67^{17} + 8\cdot 67^{18} + 35\cdot 67^{19} + 36\cdot 67^{20} + 29\cdot 67^{21} + 23\cdot 67^{22} + 3\cdot 67^{23} + 26\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 25 + \left(38 a + 15\right)\cdot 67 + \left(60 a + 22\right)\cdot 67^{2} + \left(42 a + 13\right)\cdot 67^{3} + \left(43 a + 25\right)\cdot 67^{4} + \left(63 a + 59\right)\cdot 67^{5} + \left(30 a + 65\right)\cdot 67^{6} + \left(48 a + 54\right)\cdot 67^{7} + \left(13 a + 16\right)\cdot 67^{8} + \left(29 a + 54\right)\cdot 67^{9} + \left(36 a + 7\right)\cdot 67^{10} + \left(47 a + 48\right)\cdot 67^{11} + \left(55 a + 35\right)\cdot 67^{12} + \left(52 a + 9\right)\cdot 67^{13} + \left(2 a + 39\right)\cdot 67^{14} + \left(54 a + 59\right)\cdot 67^{15} + \left(10 a + 15\right)\cdot 67^{16} + \left(52 a + 10\right)\cdot 67^{17} + \left(43 a + 12\right)\cdot 67^{18} + \left(36 a + 18\right)\cdot 67^{19} + \left(30 a + 65\right)\cdot 67^{20} + \left(47 a + 16\right)\cdot 67^{21} + \left(61 a + 51\right)\cdot 67^{22} + \left(62 a + 3\right)\cdot 67^{23} + \left(61 a + 61\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 3 }$ $=$ $ 33 + 12\cdot 67^{2} + 56\cdot 67^{3} + 23\cdot 67^{4} + 55\cdot 67^{5} + 30\cdot 67^{6} + 15\cdot 67^{7} + 36\cdot 67^{8} + 36\cdot 67^{9} + 59\cdot 67^{10} + 55\cdot 67^{11} + 45\cdot 67^{12} + 34\cdot 67^{13} + 18\cdot 67^{14} + 38\cdot 67^{15} + 16\cdot 67^{16} + 58\cdot 67^{17} + 9\cdot 67^{18} + 50\cdot 67^{19} + 29\cdot 67^{20} + 14\cdot 67^{21} + 35\cdot 67^{22} + 15\cdot 67^{23} + 64\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 4 }$ $=$ $ 43 a + 2 + \left(3 a + 51\right)\cdot 67 + \left(65 a + 56\right)\cdot 67^{2} + \left(24 a + 42\right)\cdot 67^{3} + \left(46 a + 6\right)\cdot 67^{4} + \left(60 a + 52\right)\cdot 67^{5} + \left(10 a + 53\right)\cdot 67^{6} + \left(61 a + 24\right)\cdot 67^{7} + \left(55 a + 14\right)\cdot 67^{8} + \left(31 a + 41\right)\cdot 67^{9} + 2\cdot 67^{10} + \left(52 a + 35\right)\cdot 67^{11} + \left(35 a + 40\right)\cdot 67^{12} + \left(15 a + 4\right)\cdot 67^{13} + \left(54 a + 44\right)\cdot 67^{14} + \left(46 a + 4\right)\cdot 67^{15} + \left(11 a + 31\right)\cdot 67^{16} + \left(59 a + 33\right)\cdot 67^{17} + \left(48 a + 10\right)\cdot 67^{18} + \left(14 a + 14\right)\cdot 67^{19} + \left(43 a + 51\right)\cdot 67^{20} + \left(45 a + 22\right)\cdot 67^{21} + \left(28 a + 33\right)\cdot 67^{22} + \left(38 a + 61\right)\cdot 67^{23} + \left(38 a + 8\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 5 }$ $=$ $ 47 a + 38 + \left(28 a + 14\right)\cdot 67 + \left(6 a + 25\right)\cdot 67^{2} + \left(24 a + 57\right)\cdot 67^{3} + \left(23 a + 22\right)\cdot 67^{4} + \left(3 a + 2\right)\cdot 67^{5} + \left(36 a + 59\right)\cdot 67^{6} + \left(18 a + 16\right)\cdot 67^{7} + \left(53 a + 23\right)\cdot 67^{8} + \left(37 a + 23\right)\cdot 67^{9} + \left(30 a + 57\right)\cdot 67^{10} + 19 a\cdot 67^{11} + \left(11 a + 10\right)\cdot 67^{12} + \left(14 a + 31\right)\cdot 67^{13} + \left(64 a + 64\right)\cdot 67^{14} + \left(12 a + 4\right)\cdot 67^{15} + \left(56 a + 5\right)\cdot 67^{16} + \left(14 a + 7\right)\cdot 67^{17} + \left(23 a + 1\right)\cdot 67^{18} + \left(30 a + 54\right)\cdot 67^{19} + \left(36 a + 16\right)\cdot 67^{20} + \left(19 a + 42\right)\cdot 67^{21} + \left(5 a + 49\right)\cdot 67^{22} + \left(4 a + 59\right)\cdot 67^{23} + \left(5 a + 44\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 40 + \left(63 a + 22\right)\cdot 67 + \left(a + 45\right)\cdot 67^{2} + \left(42 a + 10\right)\cdot 67^{3} + \left(20 a + 33\right)\cdot 67^{4} + \left(6 a + 47\right)\cdot 67^{5} + \left(56 a + 36\right)\cdot 67^{6} + \left(5 a + 57\right)\cdot 67^{7} + \left(11 a + 42\right)\cdot 67^{8} + \left(35 a + 45\right)\cdot 67^{9} + \left(66 a + 39\right)\cdot 67^{10} + \left(14 a + 41\right)\cdot 67^{11} + \left(31 a + 64\right)\cdot 67^{12} + \left(51 a + 30\right)\cdot 67^{13} + \left(12 a + 44\right)\cdot 67^{14} + \left(20 a + 3\right)\cdot 67^{15} + \left(55 a + 31\right)\cdot 67^{16} + \left(7 a + 57\right)\cdot 67^{17} + \left(18 a + 12\right)\cdot 67^{18} + \left(52 a + 24\right)\cdot 67^{19} + \left(23 a + 8\right)\cdot 67^{20} + \left(21 a + 28\right)\cdot 67^{21} + \left(38 a + 35\right)\cdot 67^{22} + \left(28 a + 52\right)\cdot 67^{23} + \left(28 a + 57\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 7 }$ $=$ $ 62 a + \left(48 a + 28\right)\cdot 67 + \left(15 a + 62\right)\cdot 67^{2} + \left(10 a + 43\right)\cdot 67^{3} + \left(32 a + 10\right)\cdot 67^{4} + \left(19 a + 59\right)\cdot 67^{5} + \left(10 a + 25\right)\cdot 67^{6} + \left(2 a + 56\right)\cdot 67^{7} + \left(30 a + 16\right)\cdot 67^{8} + \left(31 a + 24\right)\cdot 67^{9} + \left(61 a + 10\right)\cdot 67^{10} + \left(31 a + 44\right)\cdot 67^{11} + \left(33 a + 52\right)\cdot 67^{12} + \left(9 a + 17\right)\cdot 67^{13} + \left(46 a + 54\right)\cdot 67^{14} + \left(5 a + 51\right)\cdot 67^{15} + \left(a + 33\right)\cdot 67^{16} + \left(24 a + 25\right)\cdot 67^{17} + \left(5 a + 7\right)\cdot 67^{18} + \left(7 a + 58\right)\cdot 67^{19} + \left(22 a + 22\right)\cdot 67^{20} + \left(32 a + 3\right)\cdot 67^{21} + \left(65 a + 39\right)\cdot 67^{22} + \left(25 a + 16\right)\cdot 67^{23} + \left(13 a + 22\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 47 + \left(18 a + 27\right)\cdot 67 + \left(51 a + 9\right)\cdot 67^{2} + \left(56 a + 2\right)\cdot 67^{3} + \left(34 a + 62\right)\cdot 67^{4} + \left(47 a + 37\right)\cdot 67^{5} + \left(56 a + 47\right)\cdot 67^{6} + \left(64 a + 54\right)\cdot 67^{7} + 36 a\cdot 67^{8} + \left(35 a + 53\right)\cdot 67^{9} + \left(5 a + 23\right)\cdot 67^{10} + \left(35 a + 43\right)\cdot 67^{11} + \left(33 a + 20\right)\cdot 67^{12} + \left(57 a + 22\right)\cdot 67^{13} + \left(20 a + 28\right)\cdot 67^{14} + \left(61 a + 28\right)\cdot 67^{15} + \left(65 a + 32\right)\cdot 67^{16} + \left(42 a + 53\right)\cdot 67^{17} + \left(61 a + 4\right)\cdot 67^{18} + \left(59 a + 14\right)\cdot 67^{19} + \left(44 a + 37\right)\cdot 67^{20} + \left(34 a + 43\right)\cdot 67^{21} + a\cdot 67^{22} + \left(41 a + 55\right)\cdot 67^{23} + \left(53 a + 49\right)\cdot 67^{24} +O\left(67^{ 25 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,3,7,4)(2,6)$
$(2,4,6,5)$
$(1,5,3,4)(2,8,6,7)$
$(2,5,7)(4,8,6)$
$(2,8,4)(5,6,7)$
$(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$8$
$1$$2$$(1,3)(2,6)(4,5)(7,8)$$-8$
$6$$2$$(1,3)(2,6)$$0$
$12$$2$$(1,6)(2,3)(4,7)(5,8)$$0$
$24$$2$$(1,2)(3,6)(7,8)$$0$
$32$$3$$(1,5,7)(3,4,8)$$-1$
$6$$4$$(1,5,3,4)(2,8,6,7)$$0$
$6$$4$$(1,8,3,7)(2,5,6,4)$$0$
$12$$4$$(1,2,3,6)(4,5)(7,8)$$0$
$12$$4$$(2,4,6,5)$$0$
$32$$6$$(1,8,5,3,7,4)(2,6)$$1$
$24$$8$$(1,2,8,5,3,6,7,4)$$0$
$24$$8$$(1,2,8,4,3,6,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.