Properties

Label 8.3803e4.21t14.2
Dimension 8
Group $\GL(3,2)$
Conductor $ 3803^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$\GL(3,2)$
Conductor:$209172844170481= 3803^{4} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 4 x^{4} - x^{3} + 5 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 2 + \left(10 a + 6\right)\cdot 11 + \left(2 a^{2} + 3 a + 10\right)\cdot 11^{2} + \left(3 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(6 a^{2} + 5 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 8 a + 2 + \left(5 a^{2} + 9 a + 9\right)\cdot 11 + \left(a^{2} + 6 a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 5 a + 2\right)\cdot 11^{3} + \left(6 a^{2} + 4 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 7 a + 3 + \left(5 a^{2} + 10 a + 10\right)\cdot 11 + \left(10 a^{2} + 6 a + 10\right)\cdot 11^{2} + \left(a^{2} + 3 a\right)\cdot 11^{3} + \left(8 a^{2} + 9 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + a + 6 + \left(6 a^{2} + 9 a + 3\right)\cdot 11 + \left(2 a^{2} + 3 a + 6\right)\cdot 11^{2} + 4 a\cdot 11^{3} + \left(5 a^{2} + 9 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 2 a + 1 + \left(5 a^{2} + a + 2\right)\cdot 11 + \left(9 a^{2} + 2\right)\cdot 11^{2} + \left(5 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 6 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 2 a + 1 + \left(10 a^{2} + 3 a + 5\right)\cdot 11 + \left(6 a^{2} + 8\right)\cdot 11^{2} + \left(3 a^{2} + a + 8\right)\cdot 11^{3} + \left(10 a^{2} + 8 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 7 + 7\cdot 11 + 4\cdot 11^{3} + 5\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(2,4)(3,5)$
$(1,4)(2,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$21$ $2$ $(2,7)(5,6)$ $0$
$56$ $3$ $(1,5,6)(2,3,7)$ $-1$
$42$ $4$ $(1,4)(2,5,7,6)$ $0$
$24$ $7$ $(1,2,3,5,7,6,4)$ $1$
$24$ $7$ $(1,5,4,3,6,2,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.