Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 41.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{4} + 2 x^{2} + 15 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 a^{3} + 5 a^{2} + 22 a + 25 + \left(12 a^{3} + 18 a + 11\right)\cdot 29 + \left(a^{3} + 13 a^{2} + 25 a + 9\right)\cdot 29^{2} + \left(12 a^{3} + 16 a^{2} + 26 a + 15\right)\cdot 29^{3} + \left(16 a^{3} + 4 a^{2} + 26 a + 16\right)\cdot 29^{4} + \left(13 a^{2} + 20 a + 1\right)\cdot 29^{5} + \left(a^{3} + 15 a^{2} + 22\right)\cdot 29^{6} + \left(14 a^{3} + 27 a^{2} + 2 a + 19\right)\cdot 29^{7} + \left(16 a^{3} + 5 a^{2} + 28 a + 18\right)\cdot 29^{8} + \left(2 a^{3} + 15 a + 1\right)\cdot 29^{9} + \left(8 a^{3} + 13 a^{2} + 6 a + 16\right)\cdot 29^{10} + \left(8 a^{3} + 20 a^{2}\right)\cdot 29^{11} + \left(18 a^{3} + 2 a^{2} + 27 a + 2\right)\cdot 29^{12} + \left(8 a^{3} + 14 a^{2} + 12 a + 12\right)\cdot 29^{13} + \left(15 a^{3} + 10 a^{2} + a + 2\right)\cdot 29^{14} + \left(20 a^{3} + 15 a^{2} + 5 a + 21\right)\cdot 29^{15} + \left(27 a^{3} + 6 a^{2} + 17 a + 10\right)\cdot 29^{16} + \left(2 a^{3} + 11 a + 25\right)\cdot 29^{17} + \left(15 a^{3} + 8 a^{2} + 21 a + 6\right)\cdot 29^{18} + \left(23 a^{3} + 14 a^{2} + 9 a + 2\right)\cdot 29^{19} + \left(21 a^{3} + 18 a^{2} + 23 a + 4\right)\cdot 29^{20} + \left(18 a^{3} + 21 a^{2} + 12 a + 6\right)\cdot 29^{21} + \left(26 a^{3} + 18 a^{2} + 3 a + 5\right)\cdot 29^{22} + \left(5 a^{3} + 8 a^{2} + 6 a + 2\right)\cdot 29^{23} + \left(26 a^{3} + 11 a^{2} + 15 a + 9\right)\cdot 29^{24} + \left(11 a^{3} + 8 a^{2} + 26 a + 3\right)\cdot 29^{25} + \left(3 a^{3} + 16 a^{2} + 14 a + 11\right)\cdot 29^{26} + \left(24 a^{3} + 26 a^{2} + 28 a + 26\right)\cdot 29^{27} + \left(13 a^{3} + 24 a^{2} + 8 a + 18\right)\cdot 29^{28} + \left(27 a^{3} + 6 a^{2} + 2 a + 19\right)\cdot 29^{29} + \left(5 a^{3} + 14 a^{2} + 23\right)\cdot 29^{30} + \left(21 a^{3} + 2 a^{2} + 28 a + 11\right)\cdot 29^{31} + \left(17 a^{3} + 19 a^{2} + 17\right)\cdot 29^{32} + \left(8 a^{3} + 27 a^{2} + 6 a + 11\right)\cdot 29^{33} + \left(26 a^{3} + 4 a^{2} + 22 a + 19\right)\cdot 29^{34} + \left(10 a^{3} + 23 a^{2} + 20 a + 5\right)\cdot 29^{35} + \left(23 a^{3} + 24 a^{2} + 19 a + 28\right)\cdot 29^{36} + \left(19 a^{3} + 17 a^{2} + 19 a + 22\right)\cdot 29^{37} + \left(25 a^{3} + 3 a^{2} + 15 a + 20\right)\cdot 29^{38} + \left(8 a^{3} + 21 a^{2} + 10 a + 14\right)\cdot 29^{39} + \left(8 a^{3} + 25 a^{2} + 2 a + 17\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 a^{3} + 10 a^{2} + 12 a + 19 + \left(7 a^{3} + 7 a^{2} + 25 a + 9\right)\cdot 29 + \left(17 a^{3} + 25 a^{2} + 12 a + 18\right)\cdot 29^{2} + \left(24 a^{3} + 10 a^{2} + 16 a + 27\right)\cdot 29^{3} + \left(17 a^{3} + 3 a + 13\right)\cdot 29^{4} + \left(2 a^{3} + 17 a^{2} + 9 a + 28\right)\cdot 29^{5} + \left(16 a^{3} + 19 a^{2} + 17 a + 28\right)\cdot 29^{6} + \left(11 a^{3} + a^{2} + 8 a + 23\right)\cdot 29^{7} + \left(7 a^{3} + 11 a^{2} + 25 a + 15\right)\cdot 29^{8} + \left(23 a^{3} + 5 a^{2} + 11 a + 7\right)\cdot 29^{9} + \left(4 a^{2} + 12 a + 12\right)\cdot 29^{10} + \left(17 a^{3} + 3 a^{2} + 6 a + 16\right)\cdot 29^{11} + \left(4 a^{3} + a^{2} + 8 a + 27\right)\cdot 29^{12} + \left(12 a^{3} + 8 a^{2} + 15 a + 23\right)\cdot 29^{13} + \left(16 a^{2} + 2 a + 14\right)\cdot 29^{14} + \left(15 a^{3} + 22 a^{2} + 14 a + 2\right)\cdot 29^{15} + \left(12 a^{3} + 20 a^{2} + 3 a + 28\right)\cdot 29^{16} + \left(27 a^{3} + 27 a^{2} + 28 a + 1\right)\cdot 29^{17} + \left(4 a^{2} + 14 a + 4\right)\cdot 29^{18} + \left(a^{3} + 27 a^{2} + 9 a + 23\right)\cdot 29^{19} + \left(26 a^{3} + 2 a^{2} + a + 28\right)\cdot 29^{20} + \left(8 a^{3} + 28 a^{2} + 8 a + 24\right)\cdot 29^{21} + \left(6 a^{3} + 21 a^{2} + 26 a + 18\right)\cdot 29^{22} + \left(21 a^{3} + 16 a^{2} + 19 a + 15\right)\cdot 29^{23} + \left(20 a^{3} + 15 a^{2} + 7 a + 2\right)\cdot 29^{24} + \left(9 a^{3} + 2 a + 7\right)\cdot 29^{25} + \left(9 a^{3} + 7 a^{2} + 3\right)\cdot 29^{26} + \left(22 a^{3} + 3 a^{2} + 7 a + 19\right)\cdot 29^{27} + \left(10 a^{3} + 7 a^{2} + 4 a + 24\right)\cdot 29^{28} + \left(27 a^{3} + 25 a^{2} + 7 a + 7\right)\cdot 29^{29} + \left(8 a^{3} + 20 a^{2} + 17 a + 13\right)\cdot 29^{30} + \left(a^{3} + 13 a^{2} + 16 a + 9\right)\cdot 29^{31} + \left(28 a^{3} + 14 a^{2} + 26 a + 27\right)\cdot 29^{32} + \left(8 a^{3} + 13 a^{2} + 12 a + 15\right)\cdot 29^{33} + \left(22 a^{3} + 6 a^{2} + 18 a + 19\right)\cdot 29^{34} + \left(4 a^{3} + a^{2} + 13 a + 1\right)\cdot 29^{35} + \left(11 a^{3} + 7 a^{2} + 10 a + 18\right)\cdot 29^{36} + \left(11 a^{3} + 14 a^{2} + 14 a + 11\right)\cdot 29^{37} + \left(6 a^{3} + 25 a^{2} + 3 a + 21\right)\cdot 29^{38} + \left(27 a^{3} + 4 a^{2} + 16 a + 1\right)\cdot 29^{39} + \left(23 a^{3} + 25 a^{2} + 19 a + 26\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 a^{3} + a^{2} + 9 a + 28 + \left(24 a^{3} + a^{2} + 9 a + 23\right)\cdot 29 + \left(7 a^{3} + a^{2} + 26 a + 25\right)\cdot 29^{2} + \left(a^{3} + 11 a^{2} + 5 a + 11\right)\cdot 29^{3} + \left(19 a^{3} + 26 a^{2} + 24\right)\cdot 29^{4} + \left(18 a^{3} + 2 a^{2} + 6 a + 20\right)\cdot 29^{5} + \left(5 a^{2} + 6 a + 14\right)\cdot 29^{6} + \left(23 a^{3} + 7 a^{2} + 25 a + 13\right)\cdot 29^{7} + \left(18 a^{3} + 21 a^{2} + 8 a + 16\right)\cdot 29^{8} + \left(5 a^{3} + 16 a^{2} + 3 a + 16\right)\cdot 29^{9} + \left(23 a^{3} + 20 a^{2} + 5 a + 19\right)\cdot 29^{10} + \left(27 a^{3} + 5 a^{2} + 22 a + 9\right)\cdot 29^{11} + \left(17 a^{3} + 17 a^{2} + 25 a + 27\right)\cdot 29^{12} + \left(16 a^{3} + 14 a^{2} + 20 a\right)\cdot 29^{13} + \left(20 a^{3} + 25 a^{2} + 24 a + 26\right)\cdot 29^{14} + \left(15 a^{3} + 16 a^{2} + 11\right)\cdot 29^{15} + \left(8 a^{3} + 21 a^{2} + 4 a + 20\right)\cdot 29^{16} + \left(23 a^{3} + 19 a^{2} + 18 a + 12\right)\cdot 29^{17} + \left(14 a^{3} + 27 a^{2} + 4 a + 1\right)\cdot 29^{18} + \left(23 a^{3} + 23 a^{2} + 25 a + 19\right)\cdot 29^{19} + \left(28 a^{3} + 27 a^{2} + 13 a + 19\right)\cdot 29^{20} + \left(5 a^{3} + 9 a^{2} + 5 a + 17\right)\cdot 29^{21} + \left(8 a^{3} + 7 a^{2} + 10 a + 25\right)\cdot 29^{22} + \left(12 a^{3} + 14 a^{2} + 12 a + 6\right)\cdot 29^{23} + \left(24 a^{3} + 28 a^{2} + 15 a + 6\right)\cdot 29^{24} + \left(15 a^{3} + 2 a^{2} + 3 a + 13\right)\cdot 29^{25} + \left(16 a^{3} + 18 a^{2} + 10 a + 8\right)\cdot 29^{26} + \left(2 a^{3} + 4 a^{2} + 6 a + 1\right)\cdot 29^{27} + \left(17 a^{3} + 24 a^{2} + 15 a + 4\right)\cdot 29^{28} + \left(17 a^{3} + 16 a^{2} + 3 a + 27\right)\cdot 29^{29} + \left(27 a^{3} + 20 a^{2} + 15 a + 19\right)\cdot 29^{30} + \left(19 a^{3} + 27 a + 17\right)\cdot 29^{31} + \left(16 a^{3} + 3 a^{2} + 3 a + 18\right)\cdot 29^{32} + \left(26 a^{3} + a^{2} + 5 a + 27\right)\cdot 29^{33} + \left(24 a^{3} + 5 a^{2} + 17 a + 3\right)\cdot 29^{34} + \left(13 a^{3} + 12 a^{2} + a + 6\right)\cdot 29^{35} + \left(28 a^{3} + 18 a^{2} + 20 a + 21\right)\cdot 29^{36} + \left(12 a^{3} + 6 a^{2} + 14 a + 14\right)\cdot 29^{37} + \left(5 a^{3} + 9 a^{2} + 20 a + 23\right)\cdot 29^{38} + \left(18 a^{3} + 9 a^{2} + 7 a + 27\right)\cdot 29^{39} + \left(11 a^{3} + 4 a^{2} + 22 a + 18\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a^{3} + 23 a^{2} + 26 a + 8 + \left(12 a^{3} + 14 a^{2} + 24 a + 27\right)\cdot 29 + \left(9 a^{3} + 25 a^{2} + 24 a + 1\right)\cdot 29^{2} + \left(5 a^{3} + 8 a^{2} + 28 a + 1\right)\cdot 29^{3} + \left(27 a^{3} + 27 a^{2} + 12 a + 11\right)\cdot 29^{4} + \left(21 a^{3} + a^{2} + 14 a + 14\right)\cdot 29^{5} + \left(8 a^{3} + 16 a^{2} + 20 a + 8\right)\cdot 29^{6} + \left(7 a^{3} + 10 a^{2} + 20 a + 23\right)\cdot 29^{7} + \left(6 a^{3} + 19 a^{2} + 19 a + 27\right)\cdot 29^{8} + \left(25 a^{3} + 19 a^{2} + 11 a + 22\right)\cdot 29^{9} + \left(13 a^{3} + 11 a^{2} + 13 a + 26\right)\cdot 29^{10} + \left(11 a^{3} + a^{2} + 6 a\right)\cdot 29^{11} + \left(8 a^{3} + 11 a^{2} + 24 a + 1\right)\cdot 29^{12} + \left(8 a^{3} + 18 a^{2} + a + 9\right)\cdot 29^{13} + \left(24 a^{3} + 13 a^{2} + 10 a + 14\right)\cdot 29^{14} + \left(15 a^{3} + 3 a^{2} + 12 a\right)\cdot 29^{15} + \left(16 a^{3} + 10 a^{2} + 4 a + 19\right)\cdot 29^{16} + \left(24 a^{3} + 21 a^{2} + 26 a\right)\cdot 29^{17} + \left(10 a^{3} + 24 a^{2} + 12 a + 12\right)\cdot 29^{18} + \left(11 a^{3} + 8 a^{2} + 21 a + 3\right)\cdot 29^{19} + \left(14 a^{3} + 18 a^{2} + 20 a\right)\cdot 29^{20} + \left(4 a^{3} + 19 a^{2} + 22 a + 21\right)\cdot 29^{21} + \left(3 a^{3} + 9 a + 24\right)\cdot 29^{22} + \left(14 a^{3} + 25 a^{2} + 20 a + 24\right)\cdot 29^{23} + \left(7 a^{3} + 13 a^{2} + 18 a + 26\right)\cdot 29^{24} + \left(5 a^{3} + 3 a^{2} + 17 a + 16\right)\cdot 29^{25} + \left(26 a^{3} + 12 a^{2} + 27 a + 27\right)\cdot 29^{26} + \left(10 a^{3} + 21 a^{2} + 20 a + 17\right)\cdot 29^{27} + \left(2 a^{3} + 7 a^{2} + 23 a + 26\right)\cdot 29^{28} + \left(4 a^{3} + 26 a^{2} + 26 a + 26\right)\cdot 29^{29} + \left(6 a^{3} + 14 a^{2} + 27 a + 10\right)\cdot 29^{30} + \left(26 a^{3} + 6 a^{2} + 10 a + 11\right)\cdot 29^{31} + \left(3 a^{3} + 6 a^{2} + 18 a + 28\right)\cdot 29^{32} + \left(4 a^{3} + 5 a^{2} + 16 a + 11\right)\cdot 29^{33} + \left(20 a^{3} + a^{2} + 17 a + 20\right)\cdot 29^{34} + \left(6 a^{3} + 11 a^{2} + 7 a + 2\right)\cdot 29^{35} + \left(18 a^{3} + 21 a^{2} + 18 a + 3\right)\cdot 29^{36} + \left(21 a^{3} + 12 a^{2} + 21 a + 20\right)\cdot 29^{37} + \left(22 a^{3} + 10 a^{2} + 26 a + 5\right)\cdot 29^{38} + \left(23 a^{3} + 7 a^{2} + 9 a + 17\right)\cdot 29^{39} + \left(5 a^{2} + 28 a + 8\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 a^{3} + 13 a^{2} + 15 a + 17 + \left(13 a^{3} + 20 a^{2} + 4 a + 5\right)\cdot 29 + \left(2 a^{3} + 18 a^{2} + 22 a + 12\right)\cdot 29^{2} + \left(20 a^{3} + 19 a^{2} + 8 a + 7\right)\cdot 29^{3} + \left(4 a^{3} + 26 a^{2} + 27 a + 8\right)\cdot 29^{4} + \left(7 a^{3} + 24 a^{2} + 21 a + 22\right)\cdot 29^{5} + \left(11 a^{3} + 17 a^{2} + 4 a + 1\right)\cdot 29^{6} + \left(9 a^{3} + 21 a^{2} + 22 a + 5\right)\cdot 29^{7} + \left(15 a^{3} + 19 a^{2} + 24 a + 12\right)\cdot 29^{8} + \left(26 a^{3} + 6 a^{2} + 26 a + 9\right)\cdot 29^{9} + \left(25 a^{3} + 20 a^{2} + 4 a + 6\right)\cdot 29^{10} + \left(4 a^{3} + 28 a^{2} + 14\right)\cdot 29^{11} + \left(17 a^{3} + 7 a^{2} + 26 a + 16\right)\cdot 29^{12} + \left(20 a^{3} + 21 a^{2} + 8 a + 1\right)\cdot 29^{13} + \left(21 a^{3} + 5 a^{2} + 19\right)\cdot 29^{14} + \left(6 a^{3} + 3 a^{2} + 9 a + 20\right)\cdot 29^{15} + \left(9 a^{3} + 9 a^{2} + 4 a + 15\right)\cdot 29^{16} + \left(4 a^{3} + 10 a^{2} + 14\right)\cdot 29^{17} + \left(27 a^{3} + 17 a^{2} + 17 a + 28\right)\cdot 29^{18} + \left(9 a^{3} + 21 a^{2} + 13 a + 8\right)\cdot 29^{19} + \left(10 a^{3} + 8 a^{2} + 19 a + 10\right)\cdot 29^{20} + \left(24 a^{3} + 27 a^{2} + 2 a + 2\right)\cdot 29^{21} + \left(16 a^{3} + 9 a^{2} + 18 a + 2\right)\cdot 29^{22} + \left(18 a^{3} + 18 a^{2} + 19 a + 2\right)\cdot 29^{23} + \left(15 a^{3} + 2 a^{2} + 19 a + 12\right)\cdot 29^{24} + \left(20 a^{3} + 17 a^{2} + 25 a\right)\cdot 29^{25} + \left(28 a^{3} + 16 a^{2} + 3 a + 6\right)\cdot 29^{26} + \left(8 a^{3} + 23 a^{2} + 16 a + 27\right)\cdot 29^{27} + \left(16 a^{3} + a^{2} + 1\right)\cdot 29^{28} + \left(14 a^{3} + 9 a^{2} + 16 a + 7\right)\cdot 29^{29} + \left(15 a^{3} + 2 a^{2} + 25 a + 3\right)\cdot 29^{30} + \left(15 a^{3} + 12 a^{2} + 14 a + 1\right)\cdot 29^{31} + \left(24 a^{3} + 21 a^{2} + 26 a + 2\right)\cdot 29^{32} + \left(13 a^{3} + 15 a^{2} + 4 a + 15\right)\cdot 29^{33} + \left(13 a^{3} + 12 a^{2} + 20\right)\cdot 29^{34} + \left(28 a^{3} + 21 a^{2} + 22 a + 5\right)\cdot 29^{35} + \left(23 a^{3} + 7 a^{2} + 7 a + 25\right)\cdot 29^{36} + \left(13 a^{3} + 19 a^{2} + 9 a + 7\right)\cdot 29^{37} + \left(20 a^{3} + 19 a^{2} + 18 a + 7\right)\cdot 29^{38} + \left(3 a^{3} + 22 a^{2} + 23 a + 23\right)\cdot 29^{39} + \left(14 a^{3} + 2 a^{2} + 13 a + 23\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 a^{3} + 22 a^{2} + 17 a + \left(15 a^{3} + 18 a^{2} + 22\right)\cdot 29 + \left(27 a^{3} + 19 a^{2} + 11 a + 18\right)\cdot 29^{2} + \left(10 a^{3} + 12 a^{2} + 16 a + 24\right)\cdot 29^{3} + \left(19 a^{3} + a^{2} + 20 a + 27\right)\cdot 29^{4} + \left(12 a^{3} + 24 a^{2} + 11\right)\cdot 29^{5} + \left(13 a^{3} + 20 a^{2} + 22 a + 22\right)\cdot 29^{6} + \left(25 a^{2} + 22 a + 26\right)\cdot 29^{7} + \left(21 a^{3} + 24 a^{2} + 23 a + 10\right)\cdot 29^{8} + \left(a^{3} + 24 a^{2} + 2 a + 10\right)\cdot 29^{9} + \left(4 a^{3} + 27 a^{2} + 19 a + 12\right)\cdot 29^{10} + \left(28 a^{3} + 21 a^{2} + 2 a + 20\right)\cdot 29^{11} + \left(27 a^{3} + a^{2} + 13 a + 1\right)\cdot 29^{12} + \left(14 a^{3} + 4 a^{2} + 3 a + 19\right)\cdot 29^{13} + \left(18 a^{3} + 14 a^{2} + 12 a\right)\cdot 29^{14} + \left(16 a^{3} + 21 a^{2} + 13\right)\cdot 29^{15} + \left(28 a^{3} + 4 a^{2} + 7 a + 18\right)\cdot 29^{16} + \left(24 a^{3} + 27 a^{2} + 3 a + 25\right)\cdot 29^{17} + \left(26 a^{3} + 12 a^{2} + 23 a + 20\right)\cdot 29^{18} + \left(14 a^{3} + 3 a^{2} + 25 a + 1\right)\cdot 29^{19} + \left(17 a^{3} + 10 a^{2} + 27 a + 27\right)\cdot 29^{20} + \left(8 a^{3} + 22 a^{2} + 12 a + 11\right)\cdot 29^{21} + \left(26 a^{3} + 6 a^{2} + 20 a + 8\right)\cdot 29^{22} + \left(7 a^{3} + 18 a^{2} + 11 a + 6\right)\cdot 29^{23} + \left(23 a^{3} + 9 a^{2} + 19 a + 26\right)\cdot 29^{24} + \left(19 a^{3} + 4 a^{2} + 23 a + 21\right)\cdot 29^{25} + \left(25 a^{3} + 10 a + 2\right)\cdot 29^{26} + \left(16 a^{3} + 20 a^{2} + 18 a + 4\right)\cdot 29^{27} + \left(a^{3} + 17 a^{2} + 26 a + 13\right)\cdot 29^{28} + \left(17 a^{3} + 25 a^{2} + 9 a + 5\right)\cdot 29^{29} + \left(25 a^{3} + 12 a^{2} + 24 a + 10\right)\cdot 29^{30} + \left(22 a^{3} + 12 a^{2} + 10 a + 23\right)\cdot 29^{31} + \left(10 a^{3} + 25 a^{2} + 20 a + 1\right)\cdot 29^{32} + \left(a^{3} + 17 a^{2} + 20 a + 8\right)\cdot 29^{33} + \left(22 a^{3} + 5 a^{2} + 3 a + 17\right)\cdot 29^{34} + \left(5 a^{3} + 9 a^{2} + 9 a + 26\right)\cdot 29^{35} + \left(20 a^{3} + 14 a^{2} + 2 a + 10\right)\cdot 29^{36} + \left(14 a^{3} + 2 a^{2} + 25 a + 4\right)\cdot 29^{37} + \left(6 a^{3} + 15 a + 1\right)\cdot 29^{38} + \left(22 a^{3} + 28 a^{2} + 12 a + 13\right)\cdot 29^{39} + \left(21 a^{3} + 15 a^{2} + 19 a + 8\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 5 + 7\cdot 29 + 17\cdot 29^{2} + 5\cdot 29^{3} + 7\cdot 29^{4} + 23\cdot 29^{5} + 8\cdot 29^{6} + 12\cdot 29^{7} + 10\cdot 29^{8} + 13\cdot 29^{9} + 16\cdot 29^{10} + 13\cdot 29^{11} + 25\cdot 29^{12} + 23\cdot 29^{13} + 12\cdot 29^{14} + 29^{15} + 25\cdot 29^{16} + 2\cdot 29^{17} + 5\cdot 29^{18} + 16\cdot 29^{19} + 19\cdot 29^{20} + 23\cdot 29^{22} + 28\cdot 29^{23} + 22\cdot 29^{24} + 13\cdot 29^{25} + 14\cdot 29^{26} + 24\cdot 29^{27} + 10\cdot 29^{28} + 3\cdot 29^{29} + 18\cdot 29^{31} + 21\cdot 29^{32} + 29^{33} + 12\cdot 29^{34} + 25\cdot 29^{35} + 17\cdot 29^{36} + 16\cdot 29^{37} + 12\cdot 29^{38} + 6\cdot 29^{39} + 24\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 19 a^{3} + 8 a^{2} + 6 a + 3 + \left(7 a^{3} + 12 a^{2} + 4\right)\cdot 29 + \left(14 a^{3} + 19 a + 24\right)\cdot 29^{2} + \left(11 a^{3} + 14 a^{2} + 3 a + 24\right)\cdot 29^{3} + \left(4 a^{3} + 4 a^{2} + 21 a + 21\right)\cdot 29^{4} + \left(6 a^{3} + 3 a^{2} + 22 a + 4\right)\cdot 29^{5} + \left(14 a^{3} + 21 a^{2} + 10 a + 24\right)\cdot 29^{6} + \left(12 a^{3} + 10 a^{2} + 23 a + 23\right)\cdot 29^{7} + \left(27 a^{3} + a^{2} + 10 a + 8\right)\cdot 29^{8} + \left(6 a^{3} + 8 a^{2} + 18 a + 23\right)\cdot 29^{9} + \left(a^{3} + 18 a^{2} + a + 21\right)\cdot 29^{10} + \left(15 a^{3} + 11 a + 25\right)\cdot 29^{11} + \left(18 a^{3} + 10 a^{2} + 8 a + 26\right)\cdot 29^{12} + \left(a^{3} + 6 a^{2} + 13 a + 1\right)\cdot 29^{13} + \left(13 a^{3} + 20 a^{2} + 5 a + 25\right)\cdot 29^{14} + \left(22 a^{3} + 21 a^{2} + 12 a + 27\right)\cdot 29^{15} + \left(11 a^{3} + 14 a^{2} + 8 a + 27\right)\cdot 29^{16} + \left(11 a^{3} + 14 a^{2} + 21 a + 26\right)\cdot 29^{17} + \left(24 a^{3} + 27 a^{2} + 16 a + 14\right)\cdot 29^{18} + \left(18 a^{3} + 6 a^{2} + 25 a + 27\right)\cdot 29^{19} + \left(22 a^{3} + 13 a^{2} + 14 a\right)\cdot 29^{20} + \left(12 a^{3} + 14 a^{2} + 8 a + 22\right)\cdot 29^{21} + \left(a^{3} + 9 a^{2} + 28\right)\cdot 29^{22} + \left(15 a^{3} + 19 a^{2} + 26 a + 7\right)\cdot 29^{23} + \left(19 a^{3} + 20 a^{2} + 27 a + 2\right)\cdot 29^{24} + \left(18 a^{3} + 2 a^{2} + 26 a + 22\right)\cdot 29^{25} + \left(18 a^{3} + 8 a^{2} + 22 a + 25\right)\cdot 29^{26} + \left(26 a^{3} + 21 a^{2} + 28 a + 20\right)\cdot 29^{27} + \left(11 a^{3} + 20 a^{2} + 8 a + 23\right)\cdot 29^{28} + \left(17 a^{3} + 22 a^{2} + 2 a + 13\right)\cdot 29^{29} + \left(6 a^{3} + 10 a^{2} + 14 a + 26\right)\cdot 29^{30} + \left(24 a^{3} + 27 a^{2} + 23 a + 9\right)\cdot 29^{31} + \left(4 a^{3} + 19 a^{2} + 28 a + 16\right)\cdot 29^{32} + \left(9 a^{3} + 4 a^{2} + 2 a + 24\right)\cdot 29^{33} + \left(2 a^{3} + 25 a^{2} + 12 a + 17\right)\cdot 29^{34} + \left(16 a^{3} + 19 a^{2} + 16 a + 15\right)\cdot 29^{35} + \left(16 a^{3} + 18 a^{2} + 22 a + 10\right)\cdot 29^{36} + \left(24 a^{3} + 14 a^{2} + 10 a + 4\right)\cdot 29^{37} + \left(2 a^{3} + 3 a^{2} + a + 14\right)\cdot 29^{38} + \left(22 a^{3} + 8 a^{2} + 23 a + 13\right)\cdot 29^{39} + \left(27 a^{3} + 6 a^{2} + 23 a + 15\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 15 a^{3} + 5 a^{2} + 9 a + 13 + \left(22 a^{3} + 12 a^{2} + 3 a + 4\right)\cdot 29 + \left(6 a^{3} + 12 a^{2} + 3 a + 17\right)\cdot 29^{2} + \left(a^{3} + 22 a^{2} + 9 a + 26\right)\cdot 29^{3} + \left(7 a^{3} + 24 a^{2} + 3 a + 13\right)\cdot 29^{4} + \left(17 a^{3} + 28 a^{2} + 20 a + 17\right)\cdot 29^{5} + \left(21 a^{3} + 28 a^{2} + 4 a + 13\right)\cdot 29^{6} + \left(8 a^{3} + 10 a^{2} + 20 a + 25\right)\cdot 29^{7} + \left(3 a^{3} + 12 a^{2} + 3 a + 23\right)\cdot 29^{8} + \left(24 a^{3} + 5 a^{2} + 25 a + 10\right)\cdot 29^{9} + \left(9 a^{3} + 23 a + 13\right)\cdot 29^{10} + \left(3 a^{3} + 5 a^{2} + 8 a + 14\right)\cdot 29^{11} + \left(3 a^{3} + 6 a^{2} + 12 a + 16\right)\cdot 29^{12} + \left(4 a^{3} + 10 a + 23\right)\cdot 29^{13} + \left(2 a^{3} + 10 a^{2} + a\right)\cdot 29^{14} + \left(3 a^{3} + 11 a^{2} + 4 a + 17\right)\cdot 29^{15} + \left(a^{3} + 28 a^{2} + 9 a + 8\right)\cdot 29^{16} + \left(26 a^{3} + 23 a^{2} + 7 a + 5\right)\cdot 29^{17} + \left(24 a^{3} + 21 a^{2} + 5 a + 22\right)\cdot 29^{18} + \left(12 a^{3} + 9 a^{2} + 14 a + 13\right)\cdot 29^{19} + \left(3 a^{3} + 16 a^{2} + 23 a + 5\right)\cdot 29^{20} + \left(3 a^{3} + a^{2} + 13 a + 9\right)\cdot 29^{21} + \left(27 a^{3} + 12 a^{2} + 27 a + 8\right)\cdot 29^{22} + \left(20 a^{3} + 24 a^{2} + 28 a + 21\right)\cdot 29^{23} + \left(7 a^{3} + 13 a^{2} + 20 a + 7\right)\cdot 29^{24} + \left(14 a^{3} + 18 a^{2} + 18 a + 17\right)\cdot 29^{25} + \left(16 a^{3} + 8 a^{2} + 25 a + 16\right)\cdot 29^{26} + \left(3 a^{3} + 24 a^{2} + 18 a + 3\right)\cdot 29^{27} + \left(13 a^{3} + 11 a^{2} + 27 a + 21\right)\cdot 29^{28} + \left(19 a^{3} + 12 a^{2} + 18 a + 4\right)\cdot 29^{29} + \left(19 a^{3} + 19 a^{2} + 20 a + 8\right)\cdot 29^{30} + \left(13 a^{3} + 11 a^{2} + 12 a + 13\right)\cdot 29^{31} + \left(9 a^{3} + 6 a^{2} + 19 a + 11\right)\cdot 29^{32} + \left(14 a^{3} + a^{2} + 17 a + 28\right)\cdot 29^{33} + \left(13 a^{3} + 26 a^{2} + 24 a + 13\right)\cdot 29^{34} + \left(17 a^{2} + 24 a + 26\right)\cdot 29^{35} + \left(3 a^{3} + 3 a^{2} + 14 a + 9\right)\cdot 29^{36} + \left(26 a^{3} + 28 a^{2} + 13\right)\cdot 29^{37} + \left(25 a^{3} + 14 a^{2} + 14 a + 9\right)\cdot 29^{38} + \left(18 a^{3} + 14 a^{2} + 12 a + 27\right)\cdot 29^{39} + \left(7 a^{3} + a^{2} + 15 a + 1\right)\cdot 29^{40} +O\left(29^{ 41 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,7,5)(2,4,8)(3,6,9)$ |
| $(1,3)(2,9)(7,8)$ |
| $(1,4,3)(2,9,5)(6,7,8)$ |
| $(1,4,3)(6,8,7)$ |
| $(1,7,5)(2,8,4)$ |
| $(1,2,8,5)(3,7,6,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$8$ |
| $9$ |
$2$ |
$(1,2)(3,9)(4,5)(7,8)$ |
$0$ |
| $36$ |
$2$ |
$(1,3)(2,9)(7,8)$ |
$-2$ |
| $8$ |
$3$ |
$(1,4,3)(2,9,5)(6,7,8)$ |
$-1$ |
| $24$ |
$3$ |
$(3,5,8)(4,7,9)$ |
$2$ |
| $48$ |
$3$ |
$(1,8,2)(3,7,5)(4,6,9)$ |
$-1$ |
| $54$ |
$4$ |
$(1,3,2,9)(4,7,5,8)$ |
$0$ |
| $72$ |
$6$ |
$(1,9,2,7,6,4)(3,8,5)$ |
$1$ |
| $72$ |
$6$ |
$(1,3,6,5,2,8)(4,9)$ |
$0$ |
| $54$ |
$8$ |
$(1,5,8,9,2,4,7,3)$ |
$0$ |
| $54$ |
$8$ |
$(1,4,8,3,2,5,7,9)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.