Properties

Label 8.2e24_5e12.36t555.2c2
Dimension 8
Group $A_6$
Conductor $ 2^{24} \cdot 5^{12}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$4096000000000000= 2^{24} \cdot 5^{12} $
Artin number field: Splitting field of $f= x^{6} - 20 x^{3} - 5 x^{2} + 4 x + 10 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 44 + \left(76 a + 56\right)\cdot 83 + \left(70 a + 15\right)\cdot 83^{2} + \left(44 a + 66\right)\cdot 83^{3} + \left(6 a + 20\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 38 a + 81 + \left(82 a + 47\right)\cdot 83 + \left(45 a + 54\right)\cdot 83^{2} + \left(64 a + 67\right)\cdot 83^{3} + \left(42 a + 10\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 17\cdot 83 + 66\cdot 83^{2} + 79\cdot 83^{3} + 27\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 36 + 9\cdot 83 + \left(37 a + 18\right)\cdot 83^{2} + \left(18 a + 3\right)\cdot 83^{3} + \left(40 a + 72\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 + 8\cdot 83 + 83^{2} + 75\cdot 83^{3} + 51\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 a + 67 + \left(6 a + 26\right)\cdot 83 + \left(12 a + 10\right)\cdot 83^{2} + \left(38 a + 40\right)\cdot 83^{3} + \left(76 a + 65\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.