Properties

Label 8.2e22_3e18.36t555.4c1
Dimension 8
Group $A_6$
Conductor $ 2^{22} \cdot 3^{18}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$1624959306694656= 2^{22} \cdot 3^{18} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 12 x^{3} - 6 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 37 + \left(45 a + 29\right)\cdot 53 + \left(40 a + 28\right)\cdot 53^{2} + \left(49 a + 50\right)\cdot 53^{3} + \left(52 a + 34\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 35 + \left(29 a + 43\right)\cdot 53 + \left(37 a + 11\right)\cdot 53^{2} + \left(46 a + 39\right)\cdot 53^{3} + \left(35 a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 a + 3 + \left(7 a + 34\right)\cdot 53 + \left(12 a + 40\right)\cdot 53^{2} + \left(3 a + 49\right)\cdot 53^{3} + 37\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 15\cdot 53 + 51\cdot 53^{2} + 52\cdot 53^{3} + 50\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 5 + \left(23 a + 36\right)\cdot 53 + \left(15 a + 26\right)\cdot 53^{2} + \left(6 a + 29\right)\cdot 53^{3} + \left(17 a + 26\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 43\cdot 53^{3} + 25\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$72$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.