Properties

Label 8.2e22_3e18.36t555.3
Dimension 8
Group $A_6$
Conductor $ 2^{22} \cdot 3^{18}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$1624959306694656= 2^{22} \cdot 3^{18} $
Artin number field: Splitting field of $f= x^{6} - 8 x^{3} + 9 x^{2} - 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 107 a + 64 + \left(98 a + 25\right)\cdot 113 + \left(37 a + 54\right)\cdot 113^{2} + \left(55 a + 87\right)\cdot 113^{3} + \left(63 a + 38\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 49\cdot 113 + 74\cdot 113^{2} + 76\cdot 113^{3} + 99\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 105 + \left(14 a + 88\right)\cdot 113 + \left(75 a + 70\right)\cdot 113^{2} + \left(57 a + 35\right)\cdot 113^{3} + \left(49 a + 67\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 18 + \left(49 a + 26\right)\cdot 113 + \left(54 a + 32\right)\cdot 113^{2} + \left(44 a + 103\right)\cdot 113^{3} + \left(62 a + 75\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 109 + 108\cdot 113 + 35\cdot 113^{2} + 18\cdot 113^{3} + 68\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 103 a + 25 + \left(63 a + 40\right)\cdot 113 + \left(58 a + 71\right)\cdot 113^{2} + \left(68 a + 17\right)\cdot 113^{3} + \left(50 a + 102\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $8$ $8$
$45$ $2$ $(1,2)(3,4)$ $0$ $0$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$ $-1$
$40$ $3$ $(1,2,3)$ $-1$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $0$ $0$
$72$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$ $5$ $(1,3,4,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.