Properties

Label 8.2e22_3e18.36t555.1c1
Dimension 8
Group $A_6$
Conductor $ 2^{22} \cdot 3^{18}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$1624959306694656= 2^{22} \cdot 3^{18} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 12 x^{3} - 15 x^{2} + 36 x - 40 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 113 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 113 }$: $ x^{2} + 101 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 55 + \left(47 a + 62\right)\cdot 113 + \left(31 a + 88\right)\cdot 113^{2} + \left(22 a + 44\right)\cdot 113^{3} + \left(23 a + 48\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 5\cdot 113 + 9\cdot 113^{2} + 63\cdot 113^{3} + 41\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 95 a + 21 + \left(104 a + 33\right)\cdot 113 + \left(99 a + 92\right)\cdot 113^{2} + \left(12 a + 25\right)\cdot 113^{3} + \left(72 a + 98\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a + 73 + \left(65 a + 9\right)\cdot 113 + \left(81 a + 79\right)\cdot 113^{2} + \left(90 a + 54\right)\cdot 113^{3} + \left(89 a + 78\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 31 + \left(8 a + 66\right)\cdot 113 + \left(13 a + 56\right)\cdot 113^{2} + \left(100 a + 80\right)\cdot 113^{3} + \left(40 a + 46\right)\cdot 113^{4} +O\left(113^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 49\cdot 113 + 13\cdot 113^{2} + 70\cdot 113^{3} + 25\cdot 113^{4} +O\left(113^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$72$$5$$(1,3,4,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.