Properties

Label 8.2e22_17e6.9t14.1c1
Dimension 8
Group $C_3^2:Q_8$
Conductor $ 2^{22} \cdot 17^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_3^2:Q_8$
Conductor:$101240302206976= 2^{22} \cdot 17^{6} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 8 x^{6} - 20 x^{5} + 8 x^{4} + 44 x^{3} + 88 x^{2} - 225 x + 106 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:Q_8$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 22.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{4} + 8 x^{2} + 10 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{3} + 8 a^{2} + 8 a + 2 + \left(8 a^{3} + a^{2} + a + 4\right)\cdot 11 + \left(5 a^{3} + a^{2} + 8 a + 6\right)\cdot 11^{2} + \left(6 a^{3} + 8 a^{2} + 6 a + 5\right)\cdot 11^{3} + \left(5 a^{3} + 9 a^{2} + 8 a + 3\right)\cdot 11^{4} + \left(a^{3} + 9 a^{2} + 6 a + 2\right)\cdot 11^{5} + \left(3 a^{3} + 8 a^{2} + 6 a + 5\right)\cdot 11^{6} + \left(8 a^{3} + 5 a^{2} + 9 a + 2\right)\cdot 11^{7} + \left(a^{3} + a^{2} + 8 a + 10\right)\cdot 11^{8} + \left(10 a^{3} + 8 a^{2} + 5\right)\cdot 11^{9} + \left(3 a^{3} + 4 a + 4\right)\cdot 11^{10} + \left(8 a^{2} + 3 a + 9\right)\cdot 11^{11} + \left(4 a^{3} + 5 a + 9\right)\cdot 11^{12} + \left(8 a^{2} + 8 a + 2\right)\cdot 11^{13} + \left(5 a^{3} + 7 a + 2\right)\cdot 11^{14} + \left(10 a^{3} + 7 a^{2} + 7 a + 6\right)\cdot 11^{15} + \left(4 a^{2} + 6 a + 5\right)\cdot 11^{16} + \left(9 a^{3} + 8 a^{2} + 10 a + 6\right)\cdot 11^{17} + \left(2 a^{3} + 5 a + 6\right)\cdot 11^{18} + \left(a^{2} + 2 a\right)\cdot 11^{19} + \left(10 a^{3} + 7 a^{2} + 8 a + 4\right)\cdot 11^{20} + \left(7 a^{2} + 5 a\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{3} + 3 a^{2} + 2 a + 8 + \left(4 a^{3} + 2\right)\cdot 11 + \left(10 a^{3} + 4 a + 9\right)\cdot 11^{2} + \left(5 a^{3} + 9 a + 1\right)\cdot 11^{3} + \left(4 a^{2} + a + 3\right)\cdot 11^{4} + \left(4 a^{3} + 10 a^{2} + 9 a + 1\right)\cdot 11^{5} + \left(4 a^{3} + 7 a^{2} + 6 a + 5\right)\cdot 11^{6} + \left(2 a^{3} + 7 a^{2} + 6 a + 4\right)\cdot 11^{7} + \left(9 a^{3} + a^{2} + 5 a + 6\right)\cdot 11^{8} + \left(5 a^{3} + 9 a^{2} + 6 a + 10\right)\cdot 11^{9} + \left(3 a^{3} + 2 a^{2} + 10 a + 9\right)\cdot 11^{10} + \left(8 a^{3} + 10 a^{2} + 2 a\right)\cdot 11^{11} + \left(4 a^{3} + a^{2} + 10 a + 9\right)\cdot 11^{12} + \left(8 a^{3} + 3 a^{2} + 6 a + 10\right)\cdot 11^{13} + \left(8 a^{3} + 9 a^{2} + 3 a + 3\right)\cdot 11^{14} + \left(6 a^{3} + 6 a^{2} + 5\right)\cdot 11^{15} + \left(7 a^{3} + 3 a^{2} + 7 a + 7\right)\cdot 11^{16} + \left(7 a^{3} + a^{2} + 5 a\right)\cdot 11^{17} + \left(a^{2} + 3\right)\cdot 11^{18} + \left(4 a^{3} + 6 a^{2} + 2 a + 5\right)\cdot 11^{19} + \left(3 a^{3} + 2 a + 10\right)\cdot 11^{20} + \left(3 a^{2} + 4 a + 4\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{3} + 2 a^{2} + 7 a + \left(5 a^{2} + 6 a + 3\right)\cdot 11 + \left(6 a^{3} + a^{2} + 9 a + 9\right)\cdot 11^{2} + \left(6 a^{3} + 10 a^{2} + 5 a + 5\right)\cdot 11^{3} + \left(7 a^{3} + 3 a^{2} + 7 a + 1\right)\cdot 11^{4} + \left(7 a^{3} + 5 a^{2} + a\right)\cdot 11^{5} + \left(3 a^{3} + 6 a^{2} + 9 a + 3\right)\cdot 11^{6} + \left(8 a^{3} + a^{2} + a + 2\right)\cdot 11^{7} + \left(5 a^{3} + 9 a^{2} + 6 a + 6\right)\cdot 11^{8} + \left(a^{3} + 9 a^{2} + 6 a + 7\right)\cdot 11^{9} + \left(10 a^{3} + 10 a^{2}\right)\cdot 11^{10} + \left(8 a^{3} + 10 a + 4\right)\cdot 11^{11} + \left(a^{3} + 5 a^{2} + 3 a + 10\right)\cdot 11^{12} + \left(a^{3} + 10 a^{2} + 8 a + 7\right)\cdot 11^{13} + \left(6 a^{3} + 7 a^{2} + 4 a + 7\right)\cdot 11^{14} + \left(9 a^{3} + 9 a^{2} + 10 a + 4\right)\cdot 11^{15} + \left(9 a^{3} + 3 a^{2} + 2 a + 9\right)\cdot 11^{16} + \left(9 a^{3} + 2 a^{2} + 6 a + 8\right)\cdot 11^{17} + \left(8 a^{3} + 6 a^{2} + 1\right)\cdot 11^{18} + \left(4 a^{3} + 7 a^{2} + 5 a + 5\right)\cdot 11^{19} + \left(3 a^{3} + 7\right)\cdot 11^{20} + \left(8 a^{3} + 6 a^{2} + a + 6\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{3} + 8 a^{2} + 9 a + \left(6 a^{3} + 10 a^{2} + 10 a + 8\right)\cdot 11 + \left(4 a^{3} + 5 a^{2} + 8 a + 5\right)\cdot 11^{2} + \left(2 a^{3} + 2 a^{2} + 8 a + 7\right)\cdot 11^{3} + \left(2 a^{3} + a^{2} + 4 a + 4\right)\cdot 11^{4} + \left(3 a^{3} + 7 a^{2} + 4 a + 9\right)\cdot 11^{5} + \left(a^{3} + 5 a^{2} + 3 a + 5\right)\cdot 11^{6} + \left(6 a^{3} + 9 a + 3\right)\cdot 11^{7} + \left(a^{3} + 3 a^{2} + 9\right)\cdot 11^{8} + \left(7 a^{3} + 5 a^{2} + 7 a + 4\right)\cdot 11^{9} + \left(7 a^{3} + 4 a^{2} + 9 a + 3\right)\cdot 11^{10} + \left(8 a^{3} + 7 a^{2} + 3\right)\cdot 11^{11} + \left(6 a^{3} + 6 a^{2} + 7 a + 10\right)\cdot 11^{12} + \left(10 a^{2} + 4 a + 3\right)\cdot 11^{13} + \left(9 a^{3} + 5 a\right)\cdot 11^{14} + \left(6 a^{3} + 9 a^{2} + 5 a + 9\right)\cdot 11^{15} + \left(a^{3} + 3 a^{2} + 3 a + 1\right)\cdot 11^{16} + \left(10 a^{3} + 4 a^{2} + 9\right)\cdot 11^{17} + \left(4 a^{3} + 3 a^{2} + 7 a + 10\right)\cdot 11^{18} + \left(5 a^{3} + 7 a^{2} + 5 a + 3\right)\cdot 11^{19} + \left(4 a^{3} + 2 a^{2} + 6 a + 5\right)\cdot 11^{20} + \left(6 a^{3} + 10 a^{2} + 4 a + 2\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 5 }$ $=$ $ 6 a^{3} + 3 a^{2} + 3 a + 6 + \left(2 a^{3} + 9 a^{2} + 9 a + 6\right)\cdot 11 + \left(a^{3} + 3 a^{2} + 10\right)\cdot 11^{2} + \left(7 a^{3} + 8 a\right)\cdot 11^{3} + \left(2 a^{3} + 7 a^{2} + 6 a + 9\right)\cdot 11^{4} + \left(2 a^{3} + 5 a^{2} + a + 1\right)\cdot 11^{5} + \left(2 a^{3} + 10 a^{2} + 5 a + 10\right)\cdot 11^{6} + \left(5 a^{3} + 7 a^{2} + 7 a + 9\right)\cdot 11^{7} + \left(9 a^{3} + 4 a^{2} + 6 a + 3\right)\cdot 11^{8} + \left(9 a^{3} + 10 a^{2} + 7 a + 7\right)\cdot 11^{9} + \left(6 a^{3} + 2 a^{2} + 8 a + 2\right)\cdot 11^{10} + \left(4 a^{3} + 7 a^{2} + 3 a + 5\right)\cdot 11^{11} + \left(6 a^{3} + a^{2} + 10 a + 9\right)\cdot 11^{12} + \left(a^{3} + a + 7\right)\cdot 11^{13} + \left(10 a^{3} + 5 a + 4\right)\cdot 11^{14} + \left(8 a^{3} + 10 a^{2} + 8 a + 6\right)\cdot 11^{15} + \left(9 a^{2} + 4 a + 3\right)\cdot 11^{16} + \left(6 a^{3} + 7 a^{2} + 5 a + 9\right)\cdot 11^{17} + \left(2 a^{3} + 5 a^{2} + 8 a + 7\right)\cdot 11^{18} + \left(a^{3} + 7 a^{2}\right)\cdot 11^{19} + \left(4 a^{3} + 5 a\right)\cdot 11^{20} + \left(3 a^{3} + a^{2} + 7 a + 9\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 6 }$ $=$ $ 3 + 8\cdot 11 + 3\cdot 11^{2} + 4\cdot 11^{5} + 4\cdot 11^{7} + 11^{9} + 4\cdot 11^{10} + 6\cdot 11^{11} + 2\cdot 11^{13} + 4\cdot 11^{14} + 5\cdot 11^{16} + 9\cdot 11^{17} + 3\cdot 11^{19} + 9\cdot 11^{20} + 5\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{3} + 2 a^{2} + a + 10 + \left(4 a^{3} + a^{2} + a + 3\right)\cdot 11 + \left(6 a^{3} + 4 a^{2} + 9 a + 6\right)\cdot 11^{2} + \left(6 a^{3} + 3 a^{2} + 4 a + 6\right)\cdot 11^{3} + \left(a^{3} + 2 a^{2} + 4 a + 10\right)\cdot 11^{4} + \left(10 a^{3} + a^{2} + 3 a + 1\right)\cdot 11^{5} + \left(4 a^{3} + a^{2} + 7 a + 7\right)\cdot 11^{6} + \left(9 a^{3} + 4 a^{2} + 10 a + 9\right)\cdot 11^{7} + \left(a^{3} + 10 a^{2} + a + 3\right)\cdot 11^{8} + \left(4 a^{3} + 8 a^{2} + a + 7\right)\cdot 11^{9} + \left(9 a^{3} + 9 a^{2} + 10 a + 1\right)\cdot 11^{10} + \left(8 a^{3} + 5 a^{2} + 2 a + 1\right)\cdot 11^{11} + \left(a^{3} + 8 a^{2} + 5 a + 2\right)\cdot 11^{12} + \left(10 a^{3} + 7 a^{2} + 6 a + 4\right)\cdot 11^{13} + \left(5 a^{3} + 4 a^{2} + 4 a + 4\right)\cdot 11^{14} + \left(10 a^{3} + 6 a^{2} + 5 a + 4\right)\cdot 11^{15} + \left(7 a^{3} + 10 a^{2} + 6 a + 5\right)\cdot 11^{16} + \left(10 a^{3} + 7 a^{2} + 4 a + 4\right)\cdot 11^{17} + \left(5 a^{3} + 5 a^{2} + 10 a + 5\right)\cdot 11^{18} + \left(9 a^{3} + 5 a^{2} + 3 a + 10\right)\cdot 11^{19} + \left(10 a^{3} + 6 a^{2} + 6 a + 3\right)\cdot 11^{20} + \left(9 a^{3} + 4 a^{2} + 7 a + 2\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{3} + 4 a^{2} + a + 8 + \left(4 a^{3} + 8 a^{2} + a + 1\right)\cdot 11 + \left(6 a^{3} + 2 a^{2} + 6 a + 6\right)\cdot 11^{2} + \left(5 a^{2} + 10 a + 7\right)\cdot 11^{3} + \left(10 a^{3} + 5 a\right)\cdot 11^{4} + \left(3 a^{3} + 7 a^{2} + 9 a + 6\right)\cdot 11^{5} + \left(2 a^{3} + 6 a^{2} + 5 a + 4\right)\cdot 11^{6} + \left(3 a^{3} + a^{2} + 8 a + 2\right)\cdot 11^{7} + \left(5 a^{3} + 7 a + 5\right)\cdot 11^{8} + \left(4 a^{3} + 10 a^{2} + 5 a + 8\right)\cdot 11^{9} + \left(3 a^{3} + a^{2} + a + 7\right)\cdot 11^{10} + \left(10 a^{2} + 9 a + 3\right)\cdot 11^{11} + \left(8 a^{3} + 2 a^{2} + 9 a + 4\right)\cdot 11^{12} + \left(8 a^{3} + 6 a^{2} + 9\right)\cdot 11^{13} + \left(a^{3} + 8 a^{2} + 10 a + 10\right)\cdot 11^{14} + \left(8 a^{2} + 9 a + 1\right)\cdot 11^{15} + \left(6 a^{3} + 8 a^{2} + 9 a\right)\cdot 11^{16} + \left(3 a^{3} + 9 a^{2} + 4 a + 2\right)\cdot 11^{17} + \left(3 a^{3} + 6 a^{2} + 8 a + 1\right)\cdot 11^{18} + \left(6 a^{3} + 7 a^{2}\right)\cdot 11^{19} + \left(10 a^{3} + 6 a^{2} + 7 a + 8\right)\cdot 11^{20} + \left(9 a^{3} + 6 a^{2} + 9 a + 4\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{3} + 3 a^{2} + 2 a + 9 + \left(a^{3} + 7 a^{2} + 2 a + 5\right)\cdot 11 + \left(3 a^{3} + 2 a^{2} + 8 a + 8\right)\cdot 11^{2} + \left(8 a^{3} + 3 a^{2} + 7\right)\cdot 11^{3} + \left(2 a^{3} + 4 a^{2} + 4 a + 10\right)\cdot 11^{4} + \left(8 a^{2} + 7 a + 5\right)\cdot 11^{5} + \left(7 a^{2} + 10 a + 2\right)\cdot 11^{6} + \left(a^{3} + 3 a^{2} + 5\right)\cdot 11^{7} + \left(9 a^{3} + 2 a^{2} + 6 a + 9\right)\cdot 11^{8} + \left(4 a^{2} + 8 a + 1\right)\cdot 11^{9} + \left(10 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 11^{10} + \left(3 a^{3} + 4 a^{2} + 10 a + 9\right)\cdot 11^{11} + \left(10 a^{3} + 5 a^{2} + 2 a + 9\right)\cdot 11^{12} + \left(a^{3} + 8 a^{2} + 6 a + 5\right)\cdot 11^{13} + \left(8 a^{3} + 2 a + 5\right)\cdot 11^{14} + \left(a^{3} + 8 a^{2} + 7 a + 5\right)\cdot 11^{15} + \left(9 a^{3} + 9 a^{2} + 2 a + 5\right)\cdot 11^{16} + \left(8 a^{3} + a^{2} + 6 a + 4\right)\cdot 11^{17} + \left(3 a^{3} + 3 a^{2} + 2 a + 6\right)\cdot 11^{18} + \left(a^{3} + a^{2} + a + 3\right)\cdot 11^{19} + \left(8 a^{3} + 8 a^{2} + 8 a + 6\right)\cdot 11^{20} + \left(4 a^{3} + 4 a^{2} + 3 a + 7\right)\cdot 11^{21} +O\left(11^{ 22 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6)(2,8)(3,4)(7,9)$
$(1,3,8)(2,4,6)(5,7,9)$
$(1,4,6,3)(2,9,8,7)$
$(1,7,6,9)(2,4,8,3)$
$(1,5,6)(2,3,7)(4,8,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$8$
$9$$2$$(2,9)(3,8)(4,7)(5,6)$$0$
$8$$3$$(1,3,8)(2,4,6)(5,7,9)$$-1$
$18$$4$$(2,6,9,5)(3,7,8,4)$$0$
$18$$4$$(1,7,6,9)(2,4,8,3)$$0$
$18$$4$$(1,8,7,9)(2,3,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.