Properties

Label 8.320...384.12t177.a
Dimension $8$
Group $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Conductor $3.206\times 10^{14}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$8$
Group:$(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Conductor:\(320557799440384\)\(\medspace = 2^{18} \cdot 11^{4} \cdot 17^{4} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.1.17331195904.1
Galois orbit size: $1$
Smallest permutation container: 12T177
Parity: even
Projective image: $C_3^3:S_4$
Projective field: Galois closure of 9.1.17331195904.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{3} + 2x + 18 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 5 a^{2} + a + 4 + \left(16 a^{2} + 16 a + 14\right)\cdot 23 + \left(8 a^{2} + 12 a + 11\right)\cdot 23^{2} + \left(9 a^{2} + a + 22\right)\cdot 23^{3} + \left(18 a + 22\right)\cdot 23^{4} + \left(5 a^{2} + 4 a + 17\right)\cdot 23^{5} + \left(11 a^{2} + 7 a + 16\right)\cdot 23^{6} + \left(5 a^{2} + 22 a + 10\right)\cdot 23^{7} + \left(2 a^{2} + a + 14\right)\cdot 23^{8} + \left(18 a^{2} + 5 a + 15\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 20 a^{2} + 8 + \left(9 a^{2} + 14 a + 15\right)\cdot 23 + \left(11 a^{2} + 8 a + 3\right)\cdot 23^{2} + \left(12 a + 5\right)\cdot 23^{3} + \left(22 a^{2} + 9 a + 14\right)\cdot 23^{4} + \left(4 a^{2} + 16 a + 13\right)\cdot 23^{5} + \left(14 a^{2} + 6 a + 5\right)\cdot 23^{6} + \left(16 a^{2} + 11 a + 14\right)\cdot 23^{7} + \left(11 a^{2} + 14 a + 14\right)\cdot 23^{8} + \left(10 a + 6\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 a^{2} + 6 a + 11 + \left(5 a^{2} + 18 a + 5\right)\cdot 23 + \left(11 a^{2} + 13 a + 11\right)\cdot 23^{2} + \left(5 a^{2} + 5 a\right)\cdot 23^{3} + \left(7 a^{2} + 11 a + 10\right)\cdot 23^{4} + \left(5 a^{2} + 13 a + 19\right)\cdot 23^{5} + \left(13 a^{2} + 22 a + 13\right)\cdot 23^{6} + \left(9 a^{2} + 15 a + 9\right)\cdot 23^{7} + \left(10 a^{2} + 6 a + 3\right)\cdot 23^{8} + \left(8 a^{2} + 7 a + 6\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a^{2} + 21 a + 1 + \left(17 a^{2} + 16 a + 5\right)\cdot 23 + \left(3 a^{2} + 12 a + 1\right)\cdot 23^{2} + \left(20 a + 1\right)\cdot 23^{3} + \left(19 a^{2} + 21 a + 18\right)\cdot 23^{4} + \left(14 a^{2} + 21 a + 16\right)\cdot 23^{5} + \left(5 a^{2} + 3 a + 3\right)\cdot 23^{6} + \left(11 a^{2} + 11 a + 4\right)\cdot 23^{7} + \left(14 a^{2} + 6 a + 1\right)\cdot 23^{8} + \left(22 a^{2} + 12 a + 2\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 16 a^{2} + a + 18 + \left(12 a^{2} + 13 a + 3\right)\cdot 23 + \left(10 a^{2} + 20 a + 10\right)\cdot 23^{2} + \left(13 a^{2} + 22\right)\cdot 23^{3} + \left(3 a^{2} + 6 a + 4\right)\cdot 23^{4} + \left(3 a^{2} + 19 a + 11\right)\cdot 23^{5} + \left(6 a^{2} + 11 a + 2\right)\cdot 23^{6} + \left(6 a^{2} + 12 a + 8\right)\cdot 23^{7} + \left(6 a^{2} + 14 a + 7\right)\cdot 23^{8} + \left(5 a^{2} + 5 a + 5\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 15 a^{2} + 18 a + 2 + \left(16 a^{2} + 8 a + 7\right)\cdot 23 + \left(10 a^{2} + 15 a + 14\right)\cdot 23^{2} + \left(8 a^{2} + 7 a + 13\right)\cdot 23^{3} + \left(18 a^{2} + 4 a + 8\right)\cdot 23^{4} + \left(2 a^{2} + 22 a + 7\right)\cdot 23^{5} + \left(7 a^{2} + 18 a + 11\right)\cdot 23^{6} + \left(13 a^{2} + 7 a + 13\right)\cdot 23^{7} + \left(7 a^{2} + 22 a + 21\right)\cdot 23^{8} + \left(20 a^{2} + 8 a + 10\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 19 a + 6 + \left(10 a + 5\right)\cdot 23 + \left(8 a^{2} + 19 a + 22\right)\cdot 23^{2} + \left(17 a^{2} + 19 a\right)\cdot 23^{3} + \left(19 a^{2} + 12 a + 19\right)\cdot 23^{4} + \left(2 a^{2} + 10 a\right)\cdot 23^{5} + \left(4 a^{2} + 19 a + 17\right)\cdot 23^{6} + \left(2 a^{2} + 18 a + 22\right)\cdot 23^{7} + \left(21 a^{2} + 9 a + 9\right)\cdot 23^{8} + \left(14 a^{2} + 3 a + 22\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 10 a^{2} + 22 a + 10 + \left(18 a + 10\right)\cdot 23 + \left(a^{2} + 16 a + 20\right)\cdot 23^{2} + \left(9 a^{2} + 9 a + 8\right)\cdot 23^{3} + \left(20 a^{2} + 7 a + 4\right)\cdot 23^{4} + \left(14 a^{2} + 10 a + 19\right)\cdot 23^{5} + \left(2 a^{2} + 4 a + 20\right)\cdot 23^{6} + \left(22 a + 22\right)\cdot 23^{7} + \left(5 a^{2} + 16 a + 20\right)\cdot 23^{8} + \left(17 a^{2} + 6 a + 5\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 3 a^{2} + 4 a + 9 + \left(13 a^{2} + 21 a + 2\right)\cdot 23 + \left(3 a^{2} + 17 a + 20\right)\cdot 23^{2} + \left(5 a^{2} + 13 a + 16\right)\cdot 23^{3} + \left(4 a^{2} + 12\right)\cdot 23^{4} + \left(15 a^{2} + 19 a + 8\right)\cdot 23^{5} + \left(4 a^{2} + 19 a\right)\cdot 23^{6} + \left(4 a^{2} + 15 a + 9\right)\cdot 23^{7} + \left(13 a^{2} + 21 a + 21\right)\cdot 23^{8} + \left(7 a^{2} + 8 a + 16\right)\cdot 23^{9} +O(23^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,5)$
$(1,2,3)(4,7,6)(5,9,8)$
$(2,7,9)$
$(1,7,4,2)(5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $8$
$27$ $2$ $(2,7)(3,6)$ $0$
$54$ $2$ $(1,4)(2,3)(6,7)(8,9)$ $0$
$6$ $3$ $(3,6,8)$ $-4$
$8$ $3$ $(1,4,5)(2,7,9)(3,6,8)$ $-1$
$12$ $3$ $(1,4,5)(3,6,8)$ $2$
$72$ $3$ $(1,2,3)(4,7,6)(5,9,8)$ $-1$
$54$ $4$ $(2,3,7,6)(8,9)$ $0$
$54$ $6$ $(1,5,4)(2,7)(3,6)$ $0$
$108$ $6$ $(1,4)(2,3,9,8,7,6)$ $0$
$72$ $9$ $(1,2,3,4,7,6,5,9,8)$ $-1$
$72$ $9$ $(1,2,3,5,9,8,4,7,6)$ $2$
$54$ $12$ $(1,4,5)(2,3,7,6)(8,9)$ $0$
$54$ $12$ $(1,5,4)(2,3,7,6)(8,9)$ $0$
The blue line marks the conjugacy class containing complex conjugation.