Properties

Label 8.2e12_7e6_23e4.36t555.1c2
Dimension 8
Group $A_6$
Conductor $ 2^{12} \cdot 7^{6} \cdot 23^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$A_6$
Conductor:$134852664561664= 2^{12} \cdot 7^{6} \cdot 23^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 24 x^{3} - 4 x^{2} - 32 x - 64 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_6$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 21\cdot 83 + 11\cdot 83^{2} + 41\cdot 83^{3} + 78\cdot 83^{4} + 65\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 62 a + 6 + \left(81 a + 1\right)\cdot 83 + \left(9 a + 58\right)\cdot 83^{2} + \left(76 a + 61\right)\cdot 83^{3} + \left(20 a + 76\right)\cdot 83^{4} + \left(75 a + 38\right)\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 + 73\cdot 83 + 64\cdot 83^{2} + 10\cdot 83^{3} + 5\cdot 83^{4} + 17\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 39 + 53 a\cdot 83 + \left(82 a + 8\right)\cdot 83^{2} + \left(70 a + 51\right)\cdot 83^{3} + \left(26 a + 55\right)\cdot 83^{4} + \left(12 a + 65\right)\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 79 a + 43 + \left(29 a + 49\right)\cdot 83 + 37\cdot 83^{2} + \left(12 a + 39\right)\cdot 83^{3} + \left(56 a + 11\right)\cdot 83^{4} + \left(70 a + 51\right)\cdot 83^{5} +O\left(83^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 68 + \left(a + 20\right)\cdot 83 + \left(73 a + 69\right)\cdot 83^{2} + \left(6 a + 44\right)\cdot 83^{3} + \left(62 a + 21\right)\cdot 83^{4} + \left(7 a + 10\right)\cdot 83^{5} +O\left(83^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$8$
$45$$2$$(1,2)(3,4)$$0$
$40$$3$$(1,2,3)(4,5,6)$$-1$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$0$
$72$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2}$
$72$$5$$(1,3,4,5,2)$$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
The blue line marks the conjugacy class containing complex conjugation.