Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 24.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 + 87\cdot 103 + 29\cdot 103^{2} + 74\cdot 103^{3} + 2\cdot 103^{4} + 5\cdot 103^{5} + 23\cdot 103^{6} + 77\cdot 103^{7} + 47\cdot 103^{8} + 68\cdot 103^{9} + 97\cdot 103^{10} + 71\cdot 103^{11} + 19\cdot 103^{12} + 63\cdot 103^{13} + 24\cdot 103^{14} + 75\cdot 103^{15} + 84\cdot 103^{16} + 43\cdot 103^{17} + 11\cdot 103^{18} + 11\cdot 103^{19} + 12\cdot 103^{20} + 97\cdot 103^{21} + 66\cdot 103^{22} + 82\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 42 a + 52 + \left(47 a + 91\right)\cdot 103 + \left(53 a + 88\right)\cdot 103^{2} + \left(59 a + 73\right)\cdot 103^{3} + \left(69 a + 22\right)\cdot 103^{4} + \left(29 a + 36\right)\cdot 103^{5} + \left(16 a + 83\right)\cdot 103^{6} + \left(26 a + 76\right)\cdot 103^{7} + \left(88 a + 58\right)\cdot 103^{8} + \left(96 a + 37\right)\cdot 103^{9} + \left(76 a + 17\right)\cdot 103^{10} + \left(41 a + 13\right)\cdot 103^{11} + \left(20 a + 14\right)\cdot 103^{12} + \left(33 a + 71\right)\cdot 103^{13} + \left(77 a + 54\right)\cdot 103^{14} + \left(26 a + 19\right)\cdot 103^{15} + \left(81 a + 41\right)\cdot 103^{16} + \left(9 a + 28\right)\cdot 103^{17} + \left(74 a + 102\right)\cdot 103^{18} + \left(31 a + 31\right)\cdot 103^{19} + \left(95 a + 9\right)\cdot 103^{20} + \left(32 a + 80\right)\cdot 103^{21} + \left(18 a + 55\right)\cdot 103^{22} + \left(66 a + 93\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 102 a + 93 + \left(32 a + 97\right)\cdot 103 + \left(21 a + 5\right)\cdot 103^{2} + \left(91 a + 5\right)\cdot 103^{3} + \left(54 a + 30\right)\cdot 103^{4} + \left(4 a + 23\right)\cdot 103^{5} + \left(94 a + 45\right)\cdot 103^{6} + \left(9 a + 63\right)\cdot 103^{7} + \left(6 a + 79\right)\cdot 103^{8} + \left(41 a + 79\right)\cdot 103^{9} + \left(14 a + 73\right)\cdot 103^{10} + \left(59 a + 55\right)\cdot 103^{11} + \left(52 a + 10\right)\cdot 103^{12} + \left(53 a + 28\right)\cdot 103^{13} + \left(80 a + 92\right)\cdot 103^{14} + \left(92 a + 15\right)\cdot 103^{15} + \left(87 a + 48\right)\cdot 103^{16} + \left(48 a + 80\right)\cdot 103^{17} + \left(76 a + 72\right)\cdot 103^{18} + \left(35 a + 39\right)\cdot 103^{19} + \left(101 a + 50\right)\cdot 103^{20} + 27 a\cdot 103^{21} + \left(19 a + 87\right)\cdot 103^{22} + \left(88 a + 13\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 + 30\cdot 103 + 30\cdot 103^{2} + 48\cdot 103^{3} + 41\cdot 103^{4} + 92\cdot 103^{5} + 103^{6} + 36\cdot 103^{7} + 86\cdot 103^{8} + 32\cdot 103^{9} + 69\cdot 103^{10} + 103^{11} + 19\cdot 103^{12} + 102\cdot 103^{13} + 103^{14} + 4\cdot 103^{15} + 77\cdot 103^{16} + 2\cdot 103^{17} + 17\cdot 103^{18} + 78\cdot 103^{19} + 73\cdot 103^{20} + 56\cdot 103^{21} + 2\cdot 103^{22} + 2\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 61 a + 94 + \left(55 a + 96\right)\cdot 103 + \left(49 a + 94\right)\cdot 103^{2} + \left(43 a + 79\right)\cdot 103^{3} + \left(33 a + 32\right)\cdot 103^{4} + \left(73 a + 99\right)\cdot 103^{5} + \left(86 a + 69\right)\cdot 103^{6} + \left(76 a + 86\right)\cdot 103^{7} + \left(14 a + 17\right)\cdot 103^{8} + \left(6 a + 46\right)\cdot 103^{9} + \left(26 a + 100\right)\cdot 103^{10} + \left(61 a + 80\right)\cdot 103^{11} + \left(82 a + 95\right)\cdot 103^{12} + \left(69 a + 83\right)\cdot 103^{13} + \left(25 a + 98\right)\cdot 103^{14} + \left(76 a + 71\right)\cdot 103^{15} + \left(21 a + 95\right)\cdot 103^{16} + \left(93 a + 59\right)\cdot 103^{17} + \left(28 a + 63\right)\cdot 103^{18} + \left(71 a + 92\right)\cdot 103^{19} + \left(7 a + 72\right)\cdot 103^{20} + \left(70 a + 17\right)\cdot 103^{21} + \left(84 a + 41\right)\cdot 103^{22} + \left(36 a + 38\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 93 a + 75 + \left(16 a + 27\right)\cdot 103 + \left(63 a + 9\right)\cdot 103^{2} + \left(63 a + 79\right)\cdot 103^{3} + \left(93 a + 77\right)\cdot 103^{4} + \left(38 a + 15\right)\cdot 103^{5} + \left(6 a + 43\right)\cdot 103^{6} + \left(65 a + 68\right)\cdot 103^{7} + \left(26 a + 93\right)\cdot 103^{8} + \left(66 a + 47\right)\cdot 103^{9} + \left(86 a + 44\right)\cdot 103^{10} + \left(59 a + 57\right)\cdot 103^{11} + \left(95 a + 3\right)\cdot 103^{12} + \left(91 a + 19\right)\cdot 103^{13} + \left(33 a + 39\right)\cdot 103^{14} + \left(70 a + 80\right)\cdot 103^{15} + \left(101 a + 46\right)\cdot 103^{16} + \left(89 a + 83\right)\cdot 103^{17} + \left(a + 14\right)\cdot 103^{18} + \left(38 a + 10\right)\cdot 103^{19} + \left(22 a + 98\right)\cdot 103^{20} + \left(81 a + 86\right)\cdot 103^{21} + \left(81 a + 39\right)\cdot 103^{22} + \left(88 a + 97\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ a + 92 + \left(70 a + 28\right)\cdot 103 + \left(81 a + 97\right)\cdot 103^{2} + \left(11 a + 74\right)\cdot 103^{3} + \left(48 a + 96\right)\cdot 103^{4} + \left(98 a + 75\right)\cdot 103^{5} + \left(8 a + 31\right)\cdot 103^{6} + \left(93 a + 82\right)\cdot 103^{7} + \left(96 a + 75\right)\cdot 103^{8} + \left(61 a + 11\right)\cdot 103^{9} + \left(88 a + 47\right)\cdot 103^{10} + \left(43 a + 100\right)\cdot 103^{11} + \left(50 a + 3\right)\cdot 103^{12} + \left(49 a + 29\right)\cdot 103^{13} + \left(22 a + 16\right)\cdot 103^{14} + \left(10 a + 28\right)\cdot 103^{15} + \left(15 a + 43\right)\cdot 103^{16} + \left(54 a + 41\right)\cdot 103^{17} + \left(26 a + 100\right)\cdot 103^{18} + \left(67 a + 101\right)\cdot 103^{19} + \left(a + 12\right)\cdot 103^{20} + \left(75 a + 30\right)\cdot 103^{21} + \left(83 a + 78\right)\cdot 103^{22} + \left(14 a + 82\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 10 a + 65 + \left(86 a + 54\right)\cdot 103 + \left(39 a + 55\right)\cdot 103^{2} + \left(39 a + 79\right)\cdot 103^{3} + \left(9 a + 4\right)\cdot 103^{4} + \left(64 a + 64\right)\cdot 103^{5} + \left(96 a + 10\right)\cdot 103^{6} + \left(37 a + 24\right)\cdot 103^{7} + \left(76 a + 55\right)\cdot 103^{8} + \left(36 a + 87\right)\cdot 103^{9} + \left(16 a + 64\right)\cdot 103^{10} + \left(43 a + 30\right)\cdot 103^{11} + \left(7 a + 39\right)\cdot 103^{12} + \left(11 a + 15\right)\cdot 103^{13} + \left(69 a + 84\right)\cdot 103^{14} + \left(32 a + 13\right)\cdot 103^{15} + \left(a + 78\right)\cdot 103^{16} + \left(13 a + 71\right)\cdot 103^{17} + \left(101 a + 29\right)\cdot 103^{18} + \left(64 a + 46\right)\cdot 103^{19} + \left(80 a + 82\right)\cdot 103^{20} + \left(21 a + 42\right)\cdot 103^{21} + \left(21 a + 40\right)\cdot 103^{22} + \left(14 a + 1\right)\cdot 103^{23} +O\left(103^{ 24 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,4,5)(3,8,6,7)$ |
| $(2,7,3)(5,8,6)$ |
| $(3,6)(7,8)$ |
| $(1,7,3,5,4,8,6,2)$ |
| $(1,3)(2,7)(4,6)(5,8)$ |
| $(2,6,8)(3,7,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$8$ |
| $1$ |
$2$ |
$(1,4)(2,5)(3,6)(7,8)$ |
$-8$ |
| $6$ |
$2$ |
$(1,4)(7,8)$ |
$0$ |
| $12$ |
$2$ |
$(1,3)(2,7)(4,6)(5,8)$ |
$0$ |
| $24$ |
$2$ |
$(1,7)(2,5)(4,8)$ |
$0$ |
| $32$ |
$3$ |
$(1,6,5)(2,4,3)$ |
$-1$ |
| $6$ |
$4$ |
$(1,2,4,5)(3,8,6,7)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,4,5)(3,7,6,8)$ |
$0$ |
| $12$ |
$4$ |
$(1,7,4,8)$ |
$0$ |
| $12$ |
$4$ |
$(1,7,4,8)(2,5)(3,6)$ |
$0$ |
| $32$ |
$6$ |
$(1,8,2,4,7,5)(3,6)$ |
$1$ |
| $24$ |
$8$ |
$(1,7,3,5,4,8,6,2)$ |
$0$ |
| $24$ |
$8$ |
$(1,7,6,5,4,8,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.