Properties

Label 8.2e12_359e4.24t333.3c1
Dimension 8
Group $C_2^3:S_4$
Conductor $ 2^{12} \cdot 359^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2^3:S_4$
Conductor:$68035838611456= 2^{12} \cdot 359^{4} $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 4 x^{4} - 3 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T333
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 23.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 11 a^{2} + 18 a + 14 + \left(3 a^{2} + 12 a + 5\right)\cdot 19 + \left(14 a^{2} + 9 a + 4\right)\cdot 19^{2} + \left(2 a^{2} + 2 a + 9\right)\cdot 19^{3} + \left(13 a^{2} + 8 a + 11\right)\cdot 19^{4} + \left(13 a^{2} + 15 a + 5\right)\cdot 19^{5} + \left(10 a^{2} + 10 a + 16\right)\cdot 19^{6} + \left(a^{2} + 7 a + 16\right)\cdot 19^{7} + \left(12 a^{2} + 6 a + 16\right)\cdot 19^{8} + \left(8 a^{2} + 2 a + 1\right)\cdot 19^{9} + \left(10 a^{2} + 13 a + 11\right)\cdot 19^{10} + \left(12 a^{2} + 3 a + 12\right)\cdot 19^{11} + \left(10 a^{2} + 10 a + 18\right)\cdot 19^{12} + \left(13 a^{2} + 6 a + 12\right)\cdot 19^{13} + \left(13 a^{2} + 10 a + 3\right)\cdot 19^{14} + \left(2 a^{2} + 3 a + 6\right)\cdot 19^{15} + \left(5 a^{2} + 10 a + 18\right)\cdot 19^{16} + \left(5 a^{2} + 11 a + 9\right)\cdot 19^{17} + \left(a^{2} + 15 a + 9\right)\cdot 19^{18} + \left(18 a + 11\right)\cdot 19^{19} + \left(10 a^{2} + 13 a + 5\right)\cdot 19^{20} + \left(12 a^{2} + 12 a + 12\right)\cdot 19^{21} + \left(9 a^{2} + 16 a + 6\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 9 + \left(7 a^{2} + 18 a + 3\right)\cdot 19 + \left(5 a^{2} + 4 a + 16\right)\cdot 19^{2} + \left(14 a^{2} + 10 a + 10\right)\cdot 19^{3} + \left(9 a^{2} + 13 a + 11\right)\cdot 19^{4} + \left(2 a^{2} + 13 a + 18\right)\cdot 19^{5} + \left(9 a^{2} + 15 a + 4\right)\cdot 19^{6} + \left(3 a^{2} + 12 a + 9\right)\cdot 19^{7} + \left(13 a^{2} + 14 a + 12\right)\cdot 19^{8} + \left(16 a^{2} + 15 a + 8\right)\cdot 19^{9} + \left(16 a^{2} + 14 a + 17\right)\cdot 19^{10} + \left(15 a^{2} + 18\right)\cdot 19^{11} + \left(9 a^{2} + 18 a + 16\right)\cdot 19^{12} + \left(7 a^{2} + 17\right)\cdot 19^{13} + \left(6 a^{2} + 9 a + 11\right)\cdot 19^{14} + \left(7 a^{2} + 7 a + 1\right)\cdot 19^{15} + \left(14 a^{2} + 18 a + 2\right)\cdot 19^{16} + \left(6 a^{2} + 4 a + 3\right)\cdot 19^{17} + \left(2 a^{2} + 9 a\right)\cdot 19^{18} + 8\cdot 19^{19} + \left(3 a^{2} + 5 a + 16\right)\cdot 19^{20} + \left(13 a^{2} + 6 a + 11\right)\cdot 19^{21} + \left(3 a^{2} + 8 a + 3\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 11 a + 6 + \left(3 a^{2} + 5 a + 5\right)\cdot 19 + \left(10 a^{2} + 14 a + 6\right)\cdot 19^{2} + \left(11 a^{2} + 7 a + 7\right)\cdot 19^{3} + \left(15 a^{2} + 5 a + 5\right)\cdot 19^{4} + \left(7 a^{2} + 17 a + 15\right)\cdot 19^{5} + \left(17 a^{2} + 4 a + 8\right)\cdot 19^{6} + \left(a^{2} + 5 a + 11\right)\cdot 19^{7} + \left(a^{2} + 8 a + 6\right)\cdot 19^{8} + \left(8 a^{2} + 13 a\right)\cdot 19^{9} + \left(6 a^{2} + a + 13\right)\cdot 19^{10} + \left(3 a^{2} + 16 a\right)\cdot 19^{11} + \left(18 a^{2} + 7 a + 7\right)\cdot 19^{12} + \left(12 a^{2} + 13 a + 11\right)\cdot 19^{13} + \left(11 a^{2} + 17 a + 4\right)\cdot 19^{14} + \left(4 a^{2} + 3 a + 11\right)\cdot 19^{15} + \left(9 a^{2} + 8 a + 16\right)\cdot 19^{16} + \left(a^{2} + 12 a + 18\right)\cdot 19^{17} + \left(a^{2} + 12 a + 8\right)\cdot 19^{18} + 11\cdot 19^{19} + \left(12 a^{2} + 10 a + 4\right)\cdot 19^{20} + \left(12 a + 12\right)\cdot 19^{21} + \left(13 a^{2} + 10 a + 15\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 4 }$ $=$ $ 9 + 15\cdot 19 + 6\cdot 19^{2} + 11\cdot 19^{3} + 13\cdot 19^{4} + 19^{5} + 13\cdot 19^{6} + 19^{7} + 18\cdot 19^{8} + 11\cdot 19^{9} + 2\cdot 19^{10} + 15\cdot 19^{11} + 15\cdot 19^{12} + 10\cdot 19^{13} + 14\cdot 19^{14} + 6\cdot 19^{16} + 11\cdot 19^{17} + 3\cdot 19^{18} + 10\cdot 19^{19} + 2\cdot 19^{20} + 4\cdot 19^{21} + 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + a + 5 + \left(15 a^{2} + 6 a + 13\right)\cdot 19 + \left(4 a^{2} + 9 a + 14\right)\cdot 19^{2} + \left(16 a^{2} + 16 a + 9\right)\cdot 19^{3} + \left(5 a^{2} + 10 a + 7\right)\cdot 19^{4} + \left(5 a^{2} + 3 a + 13\right)\cdot 19^{5} + \left(8 a^{2} + 8 a + 2\right)\cdot 19^{6} + \left(17 a^{2} + 11 a + 2\right)\cdot 19^{7} + \left(6 a^{2} + 12 a + 2\right)\cdot 19^{8} + \left(10 a^{2} + 16 a + 17\right)\cdot 19^{9} + \left(8 a^{2} + 5 a + 7\right)\cdot 19^{10} + \left(6 a^{2} + 15 a + 6\right)\cdot 19^{11} + \left(8 a^{2} + 8 a\right)\cdot 19^{12} + \left(5 a^{2} + 12 a + 6\right)\cdot 19^{13} + \left(5 a^{2} + 8 a + 15\right)\cdot 19^{14} + \left(16 a^{2} + 15 a + 12\right)\cdot 19^{15} + \left(13 a^{2} + 8 a\right)\cdot 19^{16} + \left(13 a^{2} + 7 a + 9\right)\cdot 19^{17} + \left(17 a^{2} + 3 a + 9\right)\cdot 19^{18} + \left(18 a^{2} + 7\right)\cdot 19^{19} + \left(8 a^{2} + 5 a + 13\right)\cdot 19^{20} + \left(6 a^{2} + 6 a + 6\right)\cdot 19^{21} + \left(9 a^{2} + 2 a + 12\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 10 + \left(12 a^{2} + 15\right)\cdot 19 + \left(13 a^{2} + 14 a + 2\right)\cdot 19^{2} + \left(4 a^{2} + 8 a + 8\right)\cdot 19^{3} + \left(9 a^{2} + 5 a + 7\right)\cdot 19^{4} + \left(16 a^{2} + 5 a\right)\cdot 19^{5} + \left(9 a^{2} + 3 a + 14\right)\cdot 19^{6} + \left(15 a^{2} + 6 a + 9\right)\cdot 19^{7} + \left(5 a^{2} + 4 a + 6\right)\cdot 19^{8} + \left(2 a^{2} + 3 a + 10\right)\cdot 19^{9} + \left(2 a^{2} + 4 a + 1\right)\cdot 19^{10} + \left(3 a^{2} + 18 a\right)\cdot 19^{11} + \left(9 a^{2} + 2\right)\cdot 19^{12} + \left(11 a^{2} + 18 a + 1\right)\cdot 19^{13} + \left(12 a^{2} + 9 a + 7\right)\cdot 19^{14} + \left(11 a^{2} + 11 a + 17\right)\cdot 19^{15} + \left(4 a^{2} + 16\right)\cdot 19^{16} + \left(12 a^{2} + 14 a + 15\right)\cdot 19^{17} + \left(16 a^{2} + 9 a + 18\right)\cdot 19^{18} + \left(18 a^{2} + 18 a + 10\right)\cdot 19^{19} + \left(15 a^{2} + 13 a + 2\right)\cdot 19^{20} + \left(5 a^{2} + 12 a + 7\right)\cdot 19^{21} + \left(15 a^{2} + 10 a + 15\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 8 a + 13 + \left(15 a^{2} + 13 a + 13\right)\cdot 19 + \left(8 a^{2} + 4 a + 12\right)\cdot 19^{2} + \left(7 a^{2} + 11 a + 11\right)\cdot 19^{3} + \left(3 a^{2} + 13 a + 13\right)\cdot 19^{4} + \left(11 a^{2} + a + 3\right)\cdot 19^{5} + \left(a^{2} + 14 a + 10\right)\cdot 19^{6} + \left(17 a^{2} + 13 a + 7\right)\cdot 19^{7} + \left(17 a^{2} + 10 a + 12\right)\cdot 19^{8} + \left(10 a^{2} + 5 a + 18\right)\cdot 19^{9} + \left(12 a^{2} + 17 a + 5\right)\cdot 19^{10} + \left(15 a^{2} + 2 a + 18\right)\cdot 19^{11} + \left(11 a + 11\right)\cdot 19^{12} + \left(6 a^{2} + 5 a + 7\right)\cdot 19^{13} + \left(7 a^{2} + a + 14\right)\cdot 19^{14} + \left(14 a^{2} + 15 a + 7\right)\cdot 19^{15} + \left(9 a^{2} + 10 a + 2\right)\cdot 19^{16} + \left(17 a^{2} + 6 a\right)\cdot 19^{17} + \left(17 a^{2} + 6 a + 10\right)\cdot 19^{18} + \left(18 a^{2} + 18 a + 7\right)\cdot 19^{19} + \left(6 a^{2} + 8 a + 14\right)\cdot 19^{20} + \left(18 a^{2} + 6 a + 6\right)\cdot 19^{21} + \left(5 a^{2} + 8 a + 3\right)\cdot 19^{22} +O\left(19^{ 23 }\right)$
$r_{ 8 }$ $=$ $ 10 + 3\cdot 19 + 12\cdot 19^{2} + 7\cdot 19^{3} + 5\cdot 19^{4} + 17\cdot 19^{5} + 5\cdot 19^{6} + 17\cdot 19^{7} + 7\cdot 19^{9} + 16\cdot 19^{10} + 3\cdot 19^{11} + 3\cdot 19^{12} + 8\cdot 19^{13} + 4\cdot 19^{14} + 18\cdot 19^{15} + 12\cdot 19^{16} + 7\cdot 19^{17} + 15\cdot 19^{18} + 8\cdot 19^{19} + 16\cdot 19^{20} + 14\cdot 19^{21} + 17\cdot 19^{22} +O\left(19^{ 23 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,3)(2,8,7,5)$
$(2,8)(4,6)$
$(2,4)(6,8)$
$(1,2,4,3)(5,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$8$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-8$
$6$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$6$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$6$$2$$(1,5)(2,6)$$0$
$12$$2$$(2,8)(4,6)$$0$
$12$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$32$$3$$(1,7,4)(3,8,5)$$-1$
$12$$4$$(1,4,5,8)(2,3,6,7)$$0$
$24$$4$$(1,6,4,3)(2,8,7,5)$$0$
$24$$4$$(1,2,4,3)(5,6,8,7)$$0$
$24$$4$$(1,5)(2,8,6,4)$$0$
$32$$6$$(1,8,7,5,4,3)(2,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.