Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a^{2} + 14 a + 9 + \left(8 a^{2} + 10 a + 15\right)\cdot 19 + \left(5 a^{2} + 14 a + 5\right)\cdot 19^{2} + \left(2 a + 11\right)\cdot 19^{3} + \left(16 a^{2} + 10 a + 10\right)\cdot 19^{4} + \left(a^{2} + 10 a + 9\right)\cdot 19^{5} + \left(15 a^{2} + 17 a + 12\right)\cdot 19^{6} + \left(17 a^{2} + a + 2\right)\cdot 19^{7} + \left(4 a^{2} + 3 a + 11\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a^{2} + 8 a + 15 + \left(13 a + 7\right)\cdot 19 + \left(6 a^{2} + 7 a + 7\right)\cdot 19^{2} + \left(16 a^{2} + 5 a + 3\right)\cdot 19^{3} + \left(4 a^{2} + 12 a + 6\right)\cdot 19^{4} + \left(4 a^{2} + 7 a + 3\right)\cdot 19^{5} + \left(5 a^{2} + 8 a + 5\right)\cdot 19^{6} + \left(11 a^{2} + 7 a + 4\right)\cdot 19^{7} + \left(17 a^{2} + 10 a + 13\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 17\cdot 19 + 6\cdot 19^{2} + 11\cdot 19^{3} + 13\cdot 19^{4} + 18\cdot 19^{5} + 14\cdot 19^{6} + 6\cdot 19^{7} + 8\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a^{2} + 15 + \left(4 a^{2} + 5 a + 4\right)\cdot 19 + \left(12 a^{2} + 11 a + 7\right)\cdot 19^{2} + \left(10 a^{2} + 3 a + 1\right)\cdot 19^{3} + \left(14 a^{2} + 10 a + 3\right)\cdot 19^{4} + \left(5 a^{2} + a + 17\right)\cdot 19^{5} + \left(12 a^{2} + 17 a + 4\right)\cdot 19^{6} + \left(2 a^{2} + 14 a + 5\right)\cdot 19^{7} + \left(16 a^{2} + 11 a + 4\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 a^{2} + 16 a + 17 + \left(10 a^{2} + 13 a + 14\right)\cdot 19 + \left(7 a^{2} + 15 a + 17\right)\cdot 19^{2} + \left(2 a^{2} + 10 a + 16\right)\cdot 19^{3} + \left(17 a^{2} + 15 a\right)\cdot 19^{4} + \left(12 a^{2} + 1\right)\cdot 19^{5} + \left(17 a^{2} + 12 a + 13\right)\cdot 19^{6} + \left(8 a^{2} + 9 a + 10\right)\cdot 19^{7} + \left(15 a^{2} + 5 a + 7\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a^{2} + 4 a + 5 + \left(17 a^{2} + 9 a + 14\right)\cdot 19 + \left(2 a^{2} + 6 a + 7\right)\cdot 19^{2} + \left(7 a + 11\right)\cdot 19^{3} + \left(4 a^{2} + 3 a + 6\right)\cdot 19^{4} + \left(18 a^{2} + 4 a + 12\right)\cdot 19^{5} + \left(11 a^{2} + 5 a + 16\right)\cdot 19^{6} + \left(14 a^{2} + 13 a + 11\right)\cdot 19^{7} + \left(3 a^{2} + 11 a + 15\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 16 a^{2} + 15 a + 17 + \left(16 a^{2} + 4 a\right)\cdot 19 + \left(3 a^{2} + a + 4\right)\cdot 19^{2} + \left(8 a^{2} + 8 a + 1\right)\cdot 19^{3} + \left(5 a + 16\right)\cdot 19^{4} + \left(14 a^{2} + 13 a + 13\right)\cdot 19^{5} + \left(13 a^{2} + 15 a + 8\right)\cdot 19^{6} + \left(a^{2} + 9 a + 15\right)\cdot 19^{7} + \left(18 a^{2} + 14 a + 15\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,4,5,6)(3,7)$ |
| $(2,5)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$8$ |
| $21$ |
$2$ |
$(2,5)(3,6)$ |
$0$ |
| $56$ |
$3$ |
$(1,5,7)(2,6,4)$ |
$-1$ |
| $42$ |
$4$ |
$(1,4,5,6)(3,7)$ |
$0$ |
| $24$ |
$7$ |
$(1,4,5,2,6,7,3)$ |
$1$ |
| $24$ |
$7$ |
$(1,2,3,5,7,4,6)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.