Properties

Label 8.2e10_389e4.24t333.1c1
Dimension 8
Group $C_2^3:S_4$
Conductor $ 2^{10} \cdot 389^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$8$
Group:$C_2^3:S_4$
Conductor:$23447598121984= 2^{10} \cdot 389^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{5} - 3 x^{4} + 2 x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T333
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{3} + 6 x + 65 $
Roots:
$r_{ 1 }$ $=$ $ 27 a^{2} + 31 a + 65 + \left(33 a^{2} + 44 a + 55\right)\cdot 67 + \left(66 a^{2} + a + 52\right)\cdot 67^{2} + \left(11 a^{2} + 11 a + 34\right)\cdot 67^{3} + \left(45 a^{2} + 21 a + 63\right)\cdot 67^{4} + \left(11 a + 26\right)\cdot 67^{5} + \left(35 a^{2} + 59 a + 34\right)\cdot 67^{6} + \left(38 a^{2} + 34 a + 51\right)\cdot 67^{7} + \left(40 a^{2} + 15 a + 4\right)\cdot 67^{8} + \left(60 a^{2} + 22 a + 50\right)\cdot 67^{9} + \left(39 a^{2} + 35 a + 50\right)\cdot 67^{10} + \left(6 a^{2} + 35 a + 15\right)\cdot 67^{11} + \left(19 a^{2} + 15 a + 43\right)\cdot 67^{12} + \left(17 a^{2} + 4 a + 62\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 18 a^{2} + 56 a + 29 + \left(32 a^{2} + 18 a + 51\right)\cdot 67 + \left(17 a^{2} + 19 a + 57\right)\cdot 67^{2} + \left(25 a^{2} + 30 a + 20\right)\cdot 67^{3} + \left(31 a^{2} + 15 a + 8\right)\cdot 67^{4} + \left(28 a^{2} + 56 a + 4\right)\cdot 67^{5} + \left(16 a^{2} + 49 a + 27\right)\cdot 67^{6} + \left(2 a^{2} + 8 a + 40\right)\cdot 67^{7} + \left(42 a^{2} + 48 a + 10\right)\cdot 67^{8} + \left(3 a^{2} + 55 a + 23\right)\cdot 67^{9} + \left(61 a^{2} + 54 a + 1\right)\cdot 67^{10} + \left(35 a^{2} + 17 a + 66\right)\cdot 67^{11} + \left(29 a^{2} + 22 a + 17\right)\cdot 67^{12} + \left(33 a^{2} + 61 a + 60\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 45 + 24\cdot 67 + 25\cdot 67^{2} + 31\cdot 67^{3} + 54\cdot 67^{4} + 19\cdot 67^{5} + 63\cdot 67^{6} + 15\cdot 67^{7} + 64\cdot 67^{8} + 33\cdot 67^{9} + 9\cdot 67^{10} + 50\cdot 67^{11} + 55\cdot 67^{12} + 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 49 a + 39 + \left(21 a^{2} + 52 a + 49\right)\cdot 67 + \left(7 a^{2} + 7 a + 37\right)\cdot 67^{2} + \left(5 a^{2} + 29 a + 65\right)\cdot 67^{3} + \left(24 a^{2} + 18 a + 30\right)\cdot 67^{4} + \left(25 a^{2} + 64 a + 53\right)\cdot 67^{5} + \left(17 a^{2} + 45\right)\cdot 67^{6} + \left(60 a^{2} + 20 a + 20\right)\cdot 67^{7} + \left(a^{2} + 49 a + 19\right)\cdot 67^{8} + \left(55 a^{2} + 37 a + 4\right)\cdot 67^{9} + \left(53 a^{2} + 66 a + 10\right)\cdot 67^{10} + \left(27 a^{2} + 16 a + 12\right)\cdot 67^{11} + \left(6 a^{2} + 4 a + 46\right)\cdot 67^{12} + \left(13 a^{2} + 5 a + 24\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 22 a^{2} + 47 a + 45 + \left(a^{2} + 3 a + 61\right)\cdot 67 + \left(50 a^{2} + 46 a + 53\right)\cdot 67^{2} + \left(29 a^{2} + 25 a + 38\right)\cdot 67^{3} + \left(57 a^{2} + 30 a + 45\right)\cdot 67^{4} + \left(37 a^{2} + 66 a + 41\right)\cdot 67^{5} + \left(15 a^{2} + 24 a + 23\right)\cdot 67^{6} + \left(26 a^{2} + 23 a + 2\right)\cdot 67^{7} + \left(51 a^{2} + 3 a + 48\right)\cdot 67^{8} + \left(2 a^{2} + 56 a + 19\right)\cdot 67^{9} + \left(33 a^{2} + 43 a + 23\right)\cdot 67^{10} + \left(24 a^{2} + 13 a + 20\right)\cdot 67^{11} + \left(18 a^{2} + 29 a + 40\right)\cdot 67^{12} + \left(16 a^{2} + a + 58\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 3 + 46\cdot 67 + 52\cdot 67^{2} + 6\cdot 67^{3} + 24\cdot 67^{4} + 51\cdot 67^{5} + 56\cdot 67^{6} + 14\cdot 67^{7} + 38\cdot 67^{8} + 51\cdot 67^{9} + 61\cdot 67^{10} + 10\cdot 67^{11} + 49\cdot 67^{12} + 33\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 38 a^{2} + 15 a + 1 + \left(20 a^{2} + 25 a + 47\right)\cdot 67 + \left(38 a^{2} + 58 a + 27\right)\cdot 67^{2} + \left(59 a^{2} + 46 a + 15\right)\cdot 67^{3} + \left(59 a^{2} + 61 a + 40\right)\cdot 67^{4} + \left(4 a^{2} + a + 38\right)\cdot 67^{5} + \left(46 a^{2} + 53 a + 26\right)\cdot 67^{6} + \left(54 a^{2} + 51 a + 65\right)\cdot 67^{7} + \left(52 a^{2} + 49 a + 21\right)\cdot 67^{8} + \left(61 a^{2} + 4 a + 31\right)\cdot 67^{9} + \left(63 a^{2} + 66 a + 50\right)\cdot 67^{10} + \left(23 a^{2} + 37 a + 63\right)\cdot 67^{11} + \left(56 a^{2} + 25 a + 44\right)\cdot 67^{12} + \left(4 a^{2} + 62 a + 58\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 3 a + 43 + \left(25 a^{2} + 56 a + 65\right)\cdot 67 + \left(21 a^{2} + 26\right)\cdot 67^{2} + \left(2 a^{2} + 58 a + 54\right)\cdot 67^{3} + \left(50 a^{2} + 53 a\right)\cdot 67^{4} + \left(36 a^{2} + 32\right)\cdot 67^{5} + \left(3 a^{2} + 13 a + 57\right)\cdot 67^{6} + \left(19 a^{2} + 62 a + 56\right)\cdot 67^{7} + \left(12 a^{2} + 34 a + 60\right)\cdot 67^{8} + \left(17 a^{2} + 24 a + 53\right)\cdot 67^{9} + \left(16 a^{2} + a + 60\right)\cdot 67^{10} + \left(15 a^{2} + 12 a + 28\right)\cdot 67^{11} + \left(4 a^{2} + 37 a + 37\right)\cdot 67^{12} + \left(49 a^{2} + 66 a + 34\right)\cdot 67^{13} +O\left(67^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,7,6)$
$(1,2,6,4)(3,5,8,7)$
$(3,5)(4,6)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$8$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-8$
$6$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$6$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$6$$2$$(1,8)(4,5)$$0$
$12$$2$$(3,5)(4,6)$$0$
$12$$2$$(1,8)(2,6)(3,7)(4,5)$$0$
$32$$3$$(1,3,7)(2,8,6)$$-1$
$12$$4$$(1,6,8,3)(2,5,7,4)$$0$
$24$$4$$(1,2,3,4)(5,8,7,6)$$0$
$24$$4$$(1,5,3,2)(4,6,7,8)$$0$
$24$$4$$(1,8)(3,4,6,5)$$0$
$32$$6$$(1,2,3,8,7,6)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.